爸爸的朋友在线观看,美国毛片免费看,337p日本在线,亚洲女人日B

二次根式教案

時間:2024-07-29 21:26:22 教案 我要投稿

二次根式教案合集7篇

  作為一位杰出的教職工,通常需要用到教案來輔助教學,教案是實施教學的主要依據(jù),有著至關(guān)重要的作用。寫教案需要注意哪些格式呢?下面是小編精心整理的二次根式教案7篇,僅供參考,希望能夠幫助到大家。

二次根式教案合集7篇

二次根式教案 篇1

  一、教學目標

  1.理解分母有理化與除法的關(guān)系.

  2.掌握二次根式的分母有理化.

  3.通過二次根式的分母有理化,培養(yǎng)學生的運算能力.

  4.通過學習分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學思想

  二、教學設計

  小結(jié)、歸納、提高

  三、重點、難點解決辦法

  1.教學重點:分母有理化.

  2.教學難點:分母有理化的技巧.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、膠片、多媒體

  六、師生互動活動設計

  復習小結(jié),歸納整理,應用提高,以學生活動為主

  七、教學過程

  【復習提問】

  二次根式混合運算的步驟、運算順序、互為有理化因式.

  例1 說出下列算式的運算步驟和順序:

 。1) (先乘除,后加減).

  (2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).

 。3)辨別有理化因式:

  有理化因式: 與 , 與 , 與 …

  不是有理化因式: 與 , 與 …

  化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

  例如:等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?

  引入新課題.

  【引入新課】

  化簡式子 ,乘以什么樣的式子,分母中的.根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

  例2 把下列各式的分母有理化:

 。1) ; (2) ; (3)

  解:略.

  注:通過例題的講解,使學生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

二次根式教案 篇2

  【教學目標】

  1.運用法則

  進行二次根式的乘除運算;

  2.會用公式

  化簡二次根式。

  【教學重點】

  運用

  進行化簡或計算

  【教學難點】

  經(jīng)歷二次根式的乘除法則的探究過程

  【教學過程】

  一、情境創(chuàng)設:

  1.復習舊知:什么是二次根式?已學過二次根式的哪些性質(zhì)?

  2.計算:

  二、探索活動:

  1.學生計算;

  2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?

  3.概括:

  得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。

  將上面的`公式逆向運用可得:

  積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

  三、例題講解:

  1.計算:

  2.化簡:

  小結(jié):如何化簡二次根式?

  1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

  2.P62結(jié)果中,被開方數(shù)應不含能開得盡方的因數(shù)或因式。

  四、課堂練習:

  (一).P62 練習1、2

  其中2中(5)

  注意:

  不是積的形式,要因數(shù)分解為36×16=242.

  (二).P67 3 計算 (2)(4)

  補充練習:

  1.(x>0,y>0)

  2.拓展與提高:

  化簡:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范圍。

  ☆3.已知:,求的值。

  五、本課小結(jié)與作業(yè):

  小結(jié):二次根式的乘法法則

  作業(yè):

  1).課課練P9-10

  2).補充習題

二次根式教案 篇3

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

  學生分析:

  本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎(chǔ)差、自學能力差,因此要提供賞識性評價教學策略,給予個別關(guān)照、心理暗示以及適當?shù)木窦睿朔员靶睦,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務。

  設計理念:

  新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W生的自主性、探究性、合作性學習活動的設計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

  教學目標知識與技能目標:

  會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的.實際問題。

  過程與方法目標:

  通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經(jīng)歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。

  情感態(tài)度與價值觀:

  通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣.

  重點、難點:重點:

  合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

  難點:

  二次根式加減法的實際應用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

  教學方法:.

  1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

  3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學目標:

  1.知識目標:二次根式的加減法運算

  2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

  3.情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。

  重難點分析:

  重點:能熟練進行二次根式的加減運算。

  難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應用。

  教學關(guān)鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數(shù)學上有不同的發(fā)展。

  運用教具:小黑板等。

  教學過程:

問題與情景

師生活動

設計目的

活動一:

情景引入,導學展示

1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的'正方形木板?

這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關(guān)注:學生是否能熟練得到正確答案。 教師傾聽學生的交流,指導學生探究。

問:什么樣的二次根式能進行加減運算,運算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。

加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。

引出二次根式加減法則。

3. A、B層同學自主學習15頁例1、例2、例3,C層同學至少完成例1、例2的學習。

例1.計算:

(1) ;

(2) - ;

例2. 計算:

1)

2)

例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動二:分層練習,合作互助

1.下列計算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補充:

活動三:分層檢測,反饋小結(jié)

教材17頁習題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學到了什么知識?你有什么收獲?

作業(yè):課堂練習冊第5、6頁。

自學的同時抽查部分同學在黑板上板書計算過程。抽2名C層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名B層同學訂正。抽2名B層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學訂正。抽1名A層同學在黑板上完成例3板書過程,并做適當?shù)姆治鲋v解。

此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結(jié)果精確到0.1 m, 學生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。

A層同學完成16頁練習1、2、3;B層同學完成練習1、2,可選做第3題;C層同學盡量完成練習1、2。多數(shù)同學完成后,讓學生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名C層同學口答練習1;抽4名B層或C層同學在黑板上板書練習第2題;抽1名A層或B層同學在黑板上板書練習第3題后再分析講解。

點撥:1)對 的化簡是否正確;2)當根式中出現(xiàn)小數(shù)、分數(shù)、字母時,是否能正確處理;

3)運算法則的運用是否正確

先測試,再小組內(nèi)互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。

小結(jié)時教師要關(guān)注:

1)學生是否抓住本課的重點;

2)對于常見錯誤的認識。

把學習目標由高到低分為A、B、C三個層次,教學中做到分層要求。

學生學習經(jīng)歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。

二次根式的加減運算融入實際問題中去,提高了學生的學習興趣和對數(shù)學知識的應用意識和能力。

小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關(guān)、合作互助的目的。

培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。

對課堂的問題及時反饋,使學生熟練掌握新知識。

每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。

二次根式教案 篇4

  活動1、提出問題

  一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?

  問題:10+20是什么運算?

  活動2、探究活動

  下列3個小題怎樣計算?

  問題:1)-還能繼續(xù)往下合并嗎?

  2)看來二次根式有的能合并,有的`不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。

  活動3

  練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

  創(chuàng)設問題情景,引起學生思考。

  學生回答:這個運動場要準備(10+20)平方米的草皮。

  教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。

  我們可以利用已學知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

  教師引導驗證:

  ①設=,類比合并同類項或面積法;

 、趯W生思考,得出先化簡,再合并的解題思路

 、巯然,再合并

  學生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

  教師巡視、指導,學生完成、交流,師生評價。

  提醒學生注意先化簡成最簡二次根式后再判斷。

二次根式教案 篇5

  教學目標

  課標要求:學生要學會學習、自主學習,要為學生終生學習打下堅實的基礎(chǔ),根據(jù)教學大綱和新課標的要求,根據(jù)教材內(nèi)容和學生的特點我確定了本節(jié)課的教學目標 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學生的歸納概括能力。 3、通過對二次根式的概念和性質(zhì)的探究,提高數(shù)學探究能力和歸納表達能力。 4、學生經(jīng)歷觀察、比較、總結(jié)和應用等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應用的意識。

  教學重點:二次根式的概念和基本性質(zhì)

  教學難點:二次根式的基本性質(zhì)的靈活運用

  教法和學法

  教學活動的本質(zhì)是一種合作,一種交流。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者,本節(jié)課主要采用自主學習,合作探究,引領(lǐng)提升的方式展開教學。依據(jù)學生的年齡特點和已有的知識基礎(chǔ),本節(jié)課注重加強知識間的縱向聯(lián)系,,拓展學生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學習打下堅實的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學生養(yǎng)成聯(lián)系和發(fā)展的觀點學習數(shù)學的習慣。

  教學過程

  活動一:根據(jù)學生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設置問題情境,讓學生感受到研究二次根式來源于生活又服務于生活。 思考:用帶有根號的式子填空,看看寫出的結(jié)果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應為 cm

  (2)面積為S的正方形的邊長為

  (3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

  (4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學生發(fā)現(xiàn)所填結(jié)果都表示一個數(shù)的算術(shù)平方根,教師引導學生用一個式子表示這些有共同特點的式子。學生表示為,此時教師啟發(fā)學生回憶已學平方根的性質(zhì)讓學生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓練,讓學生體會二次根式概念的初步應用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉(zhuǎn)化的`思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

  活動二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質(zhì):雙重非負性。培養(yǎng)學生的分類討論和概括能力。例2:,則變式:,

  活動三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質(zhì),首先讓學生通過探究活動感受這條結(jié)論,然后再從算術(shù)平方根的意義出發(fā),結(jié)合具體例子對這條結(jié)論進行分析,引導學生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運算與平方運算的關(guān)系,培養(yǎng)學生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學生口述教師板書,后面的兩題由學生板演引導學生分析(2)(4)實質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內(nèi)分解因式

  活動四:探究二次根式的性質(zhì)3 3.探究 在活動三的基礎(chǔ)上出示課本第4頁的探究: 引導學生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學生歸納出二次根式的又一個性質(zhì)。培養(yǎng)學生觀察、對比的能力和意識。 此時引導學生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結(jié)果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結(jié)果看:()2=a(a),(a為任意數(shù)

二次根式教案 篇6

  教學目的

  1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

  2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學重點

  最簡二次根式的定義。

  教學難點

  一個二次根式化成最簡二次根式的方法。

  教學過程

  一、復習引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導學生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學生回答:

  二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的.二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。

  2.練習:

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?

  當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

二次根式教案 篇7

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的概念.

  2.內(nèi)容解析

  本節(jié)課是在學生學習了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應用,也為后面學習二次根式的性質(zhì)和四則運算打基礎(chǔ).

  教材先設置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學生對二次根式的定義的理解.

  本節(jié)課的教學重點是:了解二次根式的概念;

  二、目標和目標解析

  1.教學目標

 。1)體會研究二次根式是實際的需要.

  (2)了解二次根式的概念.

  2. 教學目標解析

 。1)學生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

 。2)學生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

  三、教學問題診斷分析

  對于二次根式的定義,應側(cè)重讓學生理解 “ 的雙重非負性,”即被開方數(shù) ≥0是非負數(shù), 的算術(shù)平方根 ≥0也是非負數(shù).教學時注意引導學生回憶在實數(shù)一章所學習的有關(guān)平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷.

  本節(jié)課的教學難點為:理解二次根式的雙重非負性.

  四、教學過程設計

  1.創(chuàng)設情境,提出問題

  問題1你能用帶有根號的的式子填空嗎?

 。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

 。2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

 。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

  師生活動:學生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當引導和評價.

  【設計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

  師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術(shù)平方根.

  【設計意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問題3 你能用一個式子表示一個非負數(shù)的算術(shù)平方根嗎?

  師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

  【設計意圖】讓學生體會由特殊到一般的過程,培養(yǎng)學生的概括能力.

  追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?

  師生活動:教師引導學生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.

  【設計意圖】進一步加深學生對二次根式被開方數(shù)必須是非負數(shù)的理解.

  3.辨析概念,應用鞏固

  例1 當 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?

  師生活動:引導學生從概念出發(fā)進行思考,鞏固學生對二次根式的被開方數(shù)為非負數(shù)的理解.

  例2 當 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?

  師生活動:先讓學生獨立思考,再追問.

  【設計意圖】在辨析中,加深學生對二次根式被開方數(shù)為非負數(shù)的理解.

  問題4 你能比較 與0的`大小嗎?

  師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導學生得出 ≥0的結(jié)論,強化學生對二次根式本身為非負數(shù)的理解,

  【設計意圖】通過這一活動的設計,提高學生對所學知識的遷移能力和應用意識;培養(yǎng)學生分類討論和歸納概括的能力.

  4.綜合運用,鞏固提高

  練習1 完成教科書第3頁的練習.

  練習2 當x 是什么實數(shù)時,下列各式有意義.

 。1) ;(2) ;(3) ;(4) .

  【設計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

  【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,開闊學生的視野,訓練學生的思維.

  5.總結(jié)反思

  教師和學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答以下問題.

 。1)本節(jié)課你學到了哪一類新的式子?

 。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

  (3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動:教師引導,學生小結(jié).

  【設計意圖】:學生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學習重點,掌握解題方法.

  6.布置作業(yè):

  教科書習題16.1第1,3,5, 7,10題.

  五、目標檢測設計

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【設計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).

  2. 當 時,二次根式 無意義.

  【設計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

  3.當 時,二次根式 有最小值,其最小值是 .

  【設計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.

  4.對于 ,小紅根據(jù)被開方數(shù)是非負數(shù),得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

  【設計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

【二次根式教案】相關(guān)文章:

二次根式教案09-22

有關(guān)二次根式教案三篇02-03

實用的二次根式教案三篇04-11

二次根式教案匯總九篇04-07

二次根式教案常用【15篇】05-15

二次根式教案匯總7篇04-04

二次根式教案匯編六篇04-04

二次根式教案范文10篇04-05

二次根式教案匯編七篇04-14