爸爸的朋友在线观看,美国毛片免费看,337p日本在线,亚洲女人日B

三角形內角和教案

時間:2023-12-12 14:03:15 教案 我要投稿

三角形內角和教案

  作為一名辛苦耕耘的教育工作者,時常需要用到教案,借助教案可以提高教學質量,收到預期的教學效果。那么寫教案需要注意哪些問題呢?以下是小編為大家收集的三角形內角和教案,歡迎大家借鑒與參考,希望對大家有所幫助。

三角形內角和教案

三角形內角和教案1

  教學目標

  通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發(fā)學生探索數學規(guī)律的興趣,初步感知計算多邊形內角和的公式。

  教學重難點

  三角形的內角和

  課前準備

  電腦課件、學具卡片

  教學活動

  一、計算三角尺三個內角的和。

  出示三角尺中的.一個,提問:誰來說說三角尺上的三個角分別是多少度?

  引導學生說出90度、60度、30度。

  出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。

  提問:請同學們任選一個三角尺,算出他們三個角一共多少度?

  學生計算后指名回答。

  師:三角尺三個角的和是180度。

  二、自主探索,解決問題

  提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上

  任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。

  學生小組活動,教師了解學生情況,個別同學加以輔導。

  全班交流:讓學生分別說出三個角的度數以及它們的和。

  提問:你發(fā)現了什么?

  :任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。

  三、試一試

  要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。

  教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以

  計算的結果為準。

  四、鞏固提高

  完成想想做做的題目。

  第1題

  學生獨立計算,交流算法。要求學生用量角器量出結果,和計算的結果想比較。

  第2題

  指導學生看圖,弄清拼成的三角形的三個內角指的是哪三個角。計算三角形三個角的內角和,幫助學生進一步理解:三角形三個內角的和是180度。

  第3題

  通過操作、計算,使學生認識到:不管三角形的大小怎樣變化,它的內角和是不會變化的。

  第4、5、6

  引導學生運用三角形的分類及三角形內角和的有關知識解決有關問題,重點培養(yǎng)學生靈活運用知識解決問題的能力。

三角形內角和教案2

  教學內容

  人教版小學數學第八冊第五單元第85頁例5

  任務分析

  教材分析: 《三角形的內角和》是義務教育課程標準實驗教科書(數學)四年級下冊第五單元《三角形》中的一個教學內容。這部分內容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質,有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內角和都是180度。教材在編寫上也深刻的體現出了讓學生探究的特點,通過動手操作探究發(fā)現三角形內角和為180度。教學內容的核心思想體現在讓學生經歷猜想—驗證—結論的過程,來認識和體驗三角形內角和的特點。

  學情分析:通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內角和是180°;并在相關的補充習題和數學練習冊的練習中,也有要求測量任意三角形的三個內角的度數并求出它們的和的練習,很多學生已經知道了三角形的內角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節(jié)課上的主要任務是通過實驗操作驗證三角形的內角和是180°。

  教學目標

  1、通過實驗、操作、推理歸納出三角形內角和是180°。

  2、能運用三角形的內角和是180°這一規(guī)律,求三角形未知角的度數并運用解決實際生活問題。

  3、通過拼擺,感受數學的.轉化思想。

  教學重點

  探究發(fā)現和驗證“三角形的內角和180度”。

  教學難點

  驗證三角形的內角和是180度。

  教學準備

  多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學過程

  一、復習舊知,學習鋪墊

  1、一個平角是多少度?等于幾個直角?

  2、如下圖,已經∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規(guī)律

  1、說明三角形的三個內角和

  說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

  師(指出):三角形的這三個角叫做三角形的三個內角,這三個內角的度數和叫做三角形的內角和。

  板書課題:“三角形的內角和”。

  揭示課題:今天我們一起來探究三角形的內角和有什么規(guī)律。

  2、探究三角形的內角和規(guī)律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

  生討論匯報,并引導學生發(fā)現:三角形的內角和接近180°。

  師:三角形的內角和接近180°,那它到底與180° 有怎樣的關系呢?

  學生預設:有學生可能會說出三角形的內角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

  生可能很難想到,可以提示學生:把三個內角拼成一個角就只要量一次角。讓我們一起動手做一做

  如圖:

 。1)

  銳角的三個內角拼成了一個平角,引導學生說出:銳角三角形的內角和是180°.

 。2)

  讓學生小組合作用同樣的方法,發(fā)現:直角三角形的內角和也是180°.

 。3)

  讓學生獨立用同樣的方法,發(fā)現:鈍角三角形的內角和也是180°.

  引導學生歸納:三角形的內角和是180°。

  是不是所有的三角形的內角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

  板書:三角形的內角和是180°

  三、鞏固練習,應用規(guī)律

  1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

  學生獨立完成,并說出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

  學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規(guī)律

  1、求出下面各角的度數。

 。1) (2)

  2、判斷

 。1)三角形任意兩個內角的和大于第三個角。( )

 。2)銳角三角形任意兩個內角的和大于直角。( )

  (3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

 。 ) ( )

  五、課堂小結,分享提升

  1、談談這節(jié)課你有什么收獲?

  2、課后思考題

  三角形的內角和是180°,那長方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁第12題,完成89頁16題)

  板書設計

三角形內角和教案3

  教學目標

  知識與能力:學生通過測量、撕拼的方法探索和發(fā)現三角形三個內角和是180°。

  過程與方法:學生經歷合理猜想和驗證三角形內角度數和等于180°的過程,發(fā)展空間觀念及分析推理能力。

  情感態(tài)度和價值觀:學生在活動中體驗成功的喜悅,激發(fā)學生探索數學的愿望和興趣。

  重點難點

  教學重點:

  探究發(fā)現三角形的內角和是180度。

  教學難點:

  在猜想和驗證三角形內角和的過程中發(fā)展空間觀念。

  教學過程

 活動1【導入】理解內角、內角和概念

 。薄⒅i語引入:形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單,打一幾何圖形猜一猜是什么?

  Q:結合謎面的信息來說一說三角形有什么特點?

  2、介紹內角:這三個角都在三角形的里面,又叫內角。

  Q:三角形有幾個內角?

 。、介紹內角和:把三個內角的度數加起來求和就是三角形的內角和。

  引出課題:今天我們就來研究三角形內角和。

  活動2【活動】觀察圖形

 。、觀察圖形的變與不變

 。穑穑粢来纬鍪

  Q:這是銳角三角形,什么是它的內角和?

  出示直角三角形,它的內角和是指?

  出示鈍角三角形,內角和是指?

  質疑:哪個三角形的內角和最大?

  預設1:鈍角三角形內角和大。(說想法)

  預設2:一樣大。(說想法)

  預設3:180度。

  小結:三個三角形的樣子不一樣,大小也不一樣,三個內角也不一樣,但內角和是一樣的。

 。ǘ┗顒佣翰孪雰冉呛筒蛔兊亩葦

  Q:這個一樣的度數是多少?你是怎么知道的?

  預設1:聽說過,學過。

  預設2:直角三角尺上三個角的度數和是180度。

  預設3:等邊三角形。

  這兩個都是我們知道度數的特殊的三角形,請你根據這個特殊的三角形來大膽的猜猜三角形內角和是多少度?那任意的一個三角形的內角和度數是不是180°呢?今天我們就來一起研究。

活動3【活動】測量驗證

 。ㄒ唬┧伎剂康姆椒ê驮

  過渡:你想怎么研究?(用量角器去量)

  Q:誰來介紹介紹量的方法?

  預設:要想研究內角和,只要把三個內角度數量出來再加起來看看是不是180度就可以了。

 。ǘ﹦邮譁y量

  PPT:操作建議:

  1、請你找到三角形的三個內角,用彩筆標序號1、2、3。

  2、用量角器仔細測量后,記錄角的度數。

  3、列式計算出三角形內角和度數。

  動手測量

 。ㄈ﹨R報交流:

  學生1展示測量的過程。

  Q:還有誰測量的這個銳角三角形,說一說?

  追問:為什么同一個三角形內角和度數卻不一樣?

  Q:你在測量的過程中遇到了什么困難?

  Q:觀察這些數據,雖然都不太一樣,但是都很接近?

  小結:測量確實可以幫助我們找到三個角的度數,加起來就可以求出內角和,但是測量有誤差。

活動4【活動】拼角驗證

 。ㄒ唬┧伎计渌炞C方法

  Q:你還有其他的方法嗎?

  預設1:學生沒有反應。

  師引導:說到180度,你想到什么角?(平角)

  預設2:撕拼法

  Q:怎么把三個內角拼在一起?

 。ㄉ凰海處煄椭黄,撕下三個內角。)

  Q:你能在投影上拼一拼嗎?

  預設3:折疊法

  你的方法也很好,你們聽懂了嗎?一會兒可以試試。

  預設4:描畫法

  Q:怎么描?你能演示一下嗎?

  其他同學觀察他在做什么?

  引語:剛才說的方法都很好,下面我們自己來試一試。

 。ǘ﹦邮制匆黄

  操作要求:

  1、請你用彩筆在紙上隨意畫一個三角形,并剪下來。

  2、用彩筆標出三個內角。

  3、嘗試操作。

  動手操作

 。ㄈ﹨R報交流

  Q:你是怎么研究的?發(fā)現了什么?

 。ㄋ模┬〗Y

  剛才每人的三角形是自己任意畫出的,形狀、大小都不一樣。無論是撕拼、折疊、還是描畫的方法,都是在把這三個內角拼在了一起,轉化成一個平角,我們發(fā)現他們的內角和都是180度。

活動5【活動】幾何畫板驗證

  引:但我們時間有限,研究的三角形個數有限,是不是任意一個三角形的.內角和都是180度呢?我們可以借助幾何畫板來看一看。

  師:介紹:計算機能夠幫助我們比較精確地測量出三個角的度數,并計算它們的和。

  觀察:老師拉動一個頂點,什么變了?什么沒變?

  小結:也就是,無論我們怎么改變三角形的形狀,大小,雖然它的內角在變化,但三個內角和的卻是不變的,都是180度。

  活動6【練習】基礎練習

  1、三角形中∠1=55°,∠2=45°,∠3=?

  2、直角三角形:我有一個銳角是40°,求另一個角?

  3、說一說:在一個三角形中,能有兩個直角嗎?能有兩個鈍角嗎?為什么?

  4、拼三角形

  師:兩個180°不是360°嗎?

  小結:看來,組合以后的圖形還要分清楚哪些是內角。

  活動7【練習】拓展練習

 。ㄒ唬┩卣咕毩

  今天,我們通過自己的研究發(fā)現三角形內角和是180度。那四邊形有沒有內角和呢?它的內角和是多少度?

  課件演示。

  說說這節(jié)課你的收獲?

三角形內角和教案4

  【教材內容】

  北京市義務教育課程改革實驗教材(北京版)第九冊數學

  【教材分析】

  《三角形內角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學生已經掌握了三角形的穩(wěn)定性和三角形的三邊關系相關知識后對三角形的進一步研究,探索三角形的內角和等于180°。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現三角形的內角和是180°。讓學生在自主探索中發(fā)現三角形的又一特性,更加深入的培養(yǎng)了學生的空間觀念。

  【學生分析】

  在四年級學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

  【教學目標】

  1、通過量、拼、折、剪等方法探索和發(fā)現三角形的內角和等于180°掌握并會應用這一規(guī)律解決實際的問題。

  2、通過討論、爭辯、操作、推理發(fā)展學生動手操作、觀察比較和抽象概括的能力。

  3、使學生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。

  【教學重點】

  讓學生經歷“三角形內角和是180度”這一知識的形成發(fā)展和應用的全過程。

  【教學難點】

  能利用學到的知識進行合情的推理。

  【教具學具準備】

  課件、各種各樣的直角三角形、長方形、剪刀、量角器、數學紙

  【教學過程】

一、學具三角板,引入新課

  1、(出示兩個直角三角板),問:這是咱們同學非常熟悉的一種學習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

  2、顧名思義一個三角形都有幾個角呀?(三個)

  3、認識內角

 。1)在三角形的內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書:三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

  (2)這個三角形內有幾個內角?(三個)這個呢?(三個)

 。ㄔO計意圖:由學生最熟悉的三角板引入新課,激發(fā)學生興趣的同時為后面的學習做準備)

  二、動手操作,探索新知

  (一)直角三角形內角和

 、、特殊直角三角形內角和

  1、根據我們以往對三角板的了解,你還記得每個三角形上每個內角各是多少度嗎?(生說度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。

  2、觀察這兩個三角形的度數,你有什么發(fā)現?

  生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)

  生2:我還發(fā)現他們內角加起來是180度。師:他真會觀察,你發(fā)現了嗎?快算一算是不是他說的那樣?

 。ㄕn件):(1)90°+60°+30°=180°)

  那么另一個三角板的三個內角的總度數是多少?

 。ㄉ卮,師課件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:這三個內角合起來是180度)

  4、在三角形內三個內角的總度數又簡稱為三角形的內角和。(板書:和)

  5、這個直角三角形的內角和是多少度?另一個呢?

  6、你還記得180度是我們學過的是什么角嗎?(平角)趕快在你的數學紙上畫一個平角。

 。◣煶鍪疽粋平角)問:平角是什么樣的?

  7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內角和就組成這樣的一個角呀。

 、、一般直角三角形內角和

  1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。

  2、剛才的那兩個直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學具,你能充分地利用這些學具,想辦法來研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。

 。1)小組活動

 。2)匯報

  哪個組愿意把你們的研究成果向大家展示?每個小組派代表發(fā)言。(在實物展臺上演示)

  三角形的種類

  驗證方法

  驗證結果

  “量一量”的方法:

  板書:有一點誤差的度數

  “剪一剪”的方法:

  我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)

  現在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)

  你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?

  還有其他方法嗎?

  “折一折”的方法:

  預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?

  學生演示(課件:折的過程)

 、趯W生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的.,最后都是把三個內角拼成平角。(板書:折)

  推理:

  你們有用長方形來研究直角三角形內角和度數的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)

  這種方法就叫做推理,一般到中學以后我們經常會用到。(板書:推理)

  3、小結

 。1)通過我們剛才的研究,我們發(fā)現直角三角形的內角和都是多少度呀?(板書:內角和是180°)剛才我們在測量的時候為什么會出現179度183度呢?看來只要是測量不可避免的會產生誤差。

 。2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)

  (設計意圖:引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。)

 。ǘJ角三角形、鈍角三角形的內角和

  1、請你們任意畫一個鈍角三角形,一個銳角三角形

  2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學到的知識來研究你所畫的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學生操作,匯報,課件演示)我們是用什么方法來研究的?

  3、學生模仿老師操作說理

  4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的內角和呢?我們就可以說所有三角形的內角和都是180度。

  師:這也是三角形的一個特性,現在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內角和是180°)。

 。ㄔO計意圖:引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。)

三、鞏固新知,拓展應用

  我們就用三角形的這一特性來解決一些問題

  1、兩個三角形拼成大三角形

  (1)每個三角形的內角和都是少度?

 。2)(課件把兩個三角形拼在一起)它的內角和是多少度?(這時學生答案又出現了180°和360°兩種。)師:究竟誰對呢?

  2、一個三角形去掉一部分

 。1)這是一個三角形,他的內角和是多少度?我從中剪去一個三角形他的內角和是多少度?

  再剪去一個三角形呢?(課件演示)

  你們看這兩個三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來三角形的內角和的度數和他的大小形狀都無關。

 。2)我再把這個三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)

  你能利用我們三角形的內角和是180度來研究這個四邊形的內角和是多少度嗎?

  (3)如果五邊形,你還能求出他的度數嗎?

 。ㄔO計意圖:充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。)

  四、總結評價、延伸知識

  通過這節(jié)課的學習研究你掌握了哪些知識?我們是怎樣研究的呢?

  師:先研究的是特殊直角三角形的內角和是180度,接著通過量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內角和是180度。

 。ㄔO計意圖:幫助學生梳理本節(jié)課的知識脈絡。)

三角形內角和教案5

  【教學內容】

  《人教版九年義務教育教科書數學》四年級下冊《三角形的內角和》

  【教學目標】

  1、使學生知道三角形的內角和是180,并能運用三角形的內角和是180解決生活中常見的問題。

  2、讓學生經歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、判斷、交流和推理探索用多種方法證明三角形的內角和是180。

  3、培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數學的興趣,感受學習數學的樂趣。

  【教學重點】

  使學生知道三角形的內角和是180,并能運用它解決生活中常見的問題。

  【教學難點】

  通過多種方法驗證三角形的內角和是180。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾伞

  【教學過程】

一、激趣導入,提煉學習方法

  1、課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現在學生面前。激發(fā)學生的好奇心。然后自述:“你們好,我是一個有三十多年工作經驗的老木匠了。我收了三個徒弟,他們已經從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2、繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3、選擇工具,總結方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4、導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內角的和是多少?(板書課題:三角形的內角和)

  二、動手操作,探索交流新知

  1、分組活動,探索新知

  根據學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發(fā)給以下幾種學具:

  折一折組同學發(fā)給上面的三角形一組。

  拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

  2、多方互動,交流新知

  師:請我的.大徒弟(量一量組)的同學先來匯報你們的研究成果。

 。1)首先要求學生說一說你們小組是怎樣進行探究的。

 。2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的結論,因為這是知識的形成過程。)

 。3)請學生說說通過探究活動你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導這一組從探究的過程和結論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。

  同樣引導這一組從探究的過程和結論與同學、老師交流。

  3、思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結果可能比180大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內角和就是180。(板書:三角形的內角和是180)

  四、走進生活,提升運用能力

  1、出示課前那架柁標出它的頂角是120,求它的一個底角是多少度?

  2、給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結

  師:徒弟們你們經過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老!蹦銈兿律胶筮要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們去研究。

  大屏幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內角和是多少度嗎?

三角形內角和教案6

  設計說明

  在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去探究、發(fā)現新知識的奧妙,從而讓學生在動手操作、積極探究的活動中掌握知識,積累數學活動經驗,發(fā)展空間觀念和推理能力。

  遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角板上每個角的度數都比較熟悉,從這里入手,先讓學生算出每塊三角板上三個內角的和是180°,進而引發(fā)學生猜想:其他三角形的內角和也是180°嗎?接著引導學生小組合作,任意畫出不同類型的三角形,通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差)。再引導學生通過剪拼的方法發(fā)現各類三角形的三個內角都可以拼成一個平角。然后利用課件演示進一步驗證,由此獲得三角形的內角和是180°的結論。這一系列的活動潛移默化地向學生滲透了轉化的數學思想,為后面的`學習奠定了必要的基礎。最后安排了三個層次的練習,逐層加深。在練習的過程中,既激發(fā)了學生主動解題的積極性,拓展了學生的思維,又兼顧到了智力水平發(fā)展較快的學生。

  課前準備

  教師準備 多媒體課件

  學生準備 三角板

  教學過程

  ⊙復習導入

  師:請同學們回憶一下,我們以前學過哪些平面圖形?(長方形、正方形、平行四邊形、三角形等)

  師:這些是我們早已認識的平面圖形,那么你們知道長方形有什么特征嗎?(學生匯報:長方形的對邊相等,有四個角,且四個角都是直角)

  師:這四個角一共是多少度?(360°)

  師:你是怎么算的?(90°×4=360°)

  師:請看大屏幕。(課件演示三條線段圍成三角形的過程)三條線段圍成三角形后,在三角形內形成了三個角(課件分別顯示出三個角的弧線),我們把三角形里面的這三個角叫做三角形的內角。

  師:通過剛才的回憶,同學們知道長方形四個內角的和是360°,那么三角形的內角和又是多少呢?這節(jié)課我們就來探究三角形的內角和。(板書課題)

  設計意圖:通過復習學過的平面圖形,喚醒學生的認知。借助長方形四個角都是直角的特征,學生通過計算很容易知道長方形的內角和是360°,從而質疑三角形的內角和是多少。這樣以問題情境開始,既豐富了學生的感官認識,又激發(fā)了學生的探究欲望。

  ⊙探究新知

  1.探究特殊三角形的內角和。

  師:(課件出示一塊三角板)大家熟悉這塊三角板嗎?請拿出形狀與這塊一樣的三角板,并和同桌互相說一說各個角的度數。(課件出示由三角板抽象出的三角形)

  師:這個三角形三個角的度數和是多少?(180°)你是怎樣知道的?(90°+45°+45°=180°)

  明確:把三角形三個內角的度數合起來就叫做三角形的內角和。

  師:(課件出示由另一塊三角板抽象出的三角形)這個三角形的內角和是多少度?(90°+60°+30°=180°)

  師:從剛才兩個三角形內角和的計算中你發(fā)現了什么?(這兩個三角形的內角和都是180°,且這兩個三角形都是直角三角形)

  2.探究一般三角形的內角和。

  (1)剛才我們探究了直角三角形的內角和是180°,那么其他任意三角形的內角和又是多少度呢?請大家猜一猜。(大多數學生認為也是180°)

  (2)操作、驗證一般三角形的內角和是180°。

  師:剛才大多數同學認為三角形的內角和是180°,但也有幾個同學不敢肯定,那么我們用什么方法來驗證這個猜想是否正確呢?

 、傩〗M合作,探究驗證方法。

  師:請每位同學先獨立思考,然后把你的想法在小組內交流,看一看哪個小組想出的方法最多。

 、诮涣鲄R報。

  預設

  組1:我們小組用量角器把三角形的三個內角的度數分別量出來,再加起來看一看是不是等于180°。

  組2:我們小組猜想三角形的內角和是180°,而平角的度數也是180°,如果三角形的三個內角剛好能拼成一個平角,那么就說明三角形的內角和是180°。所以我們小組把三角形的三個內角剪下來,拼一拼,看一看能不能拼成一個平角。

  ③動手操作,驗證猜想。

  師:請同學們選擇一種你喜歡的方法來驗證我們剛才的猜想,驗證完,將你的結論在小組內交流。(出示課堂活動卡,教師巡視,參與各小組的驗證活動,并給予適當的指導)

  師小結:大家剛才量出來的結果或拼出來的結果都在180°左右,其實三角形的內角和就是180°,因為在測量或操作的過程中會產生誤差,所以數據會有一些偏差。

  3.得出結論。

  師:根據上面的驗證,我們可以得出一個怎樣的結論?(三角形的內角和是180°,教師板書:三角形的內角和是180°)

  設計意圖:學生通過操作、思考、反饋等過程,真正經歷了有效的探究活動,先由直角三角形算出其內角和,再用猜想、操作、驗證等方法推導出一般三角形的內角和,最后歸納得出所有三角形的內角和都是180°。在這個過程中,學生不僅體會到了數學學習中歸納的思想方法,還感受到了數學與生活的密切聯系。

三角形內角和教案7

  【教材內容】

  北京市義務教育課程改革實驗教材(北京版)第九冊數學

  【教材分析】

  《三角形內角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學生已經掌握了三角形的穩(wěn)定性和三角形的三邊關系相關知識后對三角形的進一步研究,探索三角形的內角和等于180°。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現三角形的內角和是180°。讓學生在自主探索中發(fā)現三角形的又一特性,更加深入的培養(yǎng)了學生的空間觀念。

  【學生分析】

  在四年級學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

  【教學目標】

  1、通過量、拼、折、剪等方法探索和發(fā)現三角形的內角和等于180°掌握并會應用這一規(guī)律解決實際的問題。

  2、通過討論、爭辯、操作、推理發(fā)展學生動手操作、觀察比較和抽象概括的能力。

  3、使學生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。

  【教學重點】

  讓學生經歷“三角形內角和是180度”這一知識的形成發(fā)展和應用的全過程。

  【教學難點】

  能利用學到的知識進行合情的推理。

  【教具學具準備】

  課件、各種各樣的直角三角形、長方形、剪刀、量角器、數學紙

  【教學過程】

 一、學具三角板,引入新課

  1、(出示兩個直角三角板),問:這是咱們同學非常熟悉的一種學習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

  2、顧名思義一個三角形都有幾個角呀?(三個)

  3、認識內角

  (1)在三角形的內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書:三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

 。2)這個三角形內有幾個內角?(三個)這個呢?(三個)

 。ㄔO計意圖:由學生最熟悉的三角板引入新課,激發(fā)學生興趣的同時為后面的學習做準備)

  二、動手操作,探索新知

 。ㄒ唬┲苯侨切蝺冉呛

 、 ⑻厥庵苯侨切蝺冉呛

  1、根據我們以往對三角板的了解,你還記得每個三角形上每個內角各是多少度嗎?(生說度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。

  2、觀察這兩個三角形的度數,你有什么發(fā)現?

  生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)

  生2:我還發(fā)現他們內角加起來是180度。師:他真會觀察,你發(fā)現了嗎?快算一算是不是他說的那樣?

 。ㄕn件):(1)90°+60°+30°=180°)

  那么另一個三角板的三個內角的總度數是多少?

 。ㄉ卮,師課件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:這三個內角合起來是180度)

  4、在三角形內三個內角的總度數又簡稱為三角形的內角和。(板書:和)

  5、這個直角三角形的內角和是多少度?另一個呢?

  6、你還記得180度是我們學過的是什么角嗎?(平角)趕快在你的數學紙上畫一個平角。

  (師出示一個平角)問:平角是什么樣的?

  7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內角和就組成這樣的一個角呀。

  ⅱ、一般直角三角形內角和

  1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。

  2、剛才的那兩個直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學具,你能充分地利用這些學具,想辦法來研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。

  (1)小組活動(2)匯報

  哪個組愿意把你們的研究成果向大家展示?每個小組派代表發(fā)言。(在實物展臺上演示)

  三角形的種類

  驗證方法

  驗證結果

  “量一量”的方法:

  板書:有一點誤差的度數

  “剪一剪”的方法:

  我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)

  現在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)

  你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?

  還有其他方法嗎?

  “折一折”的方法:

  預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?

  學生演示(課件:折的過程)

 、趯W生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內角拼成平角。(板書:折)

  推理:

  你們有用長方形來研究直角三角形內角和度數的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)

  這種方法就叫做推理,一般到中學以后我們經常會用到。(板書:推理)

  3、小結

 。1)通過我們剛才的研究,我們發(fā)現直角三角形的內角和都是多少度呀?(板書:內角和是180°)剛才我們在測量的時候為什么會出現179度183度呢?看來只要是測量不可避免的會產生誤差。

 。2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)

 。ㄔO計意圖:引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。)

 。ǘ、銳角三角形、鈍角三角形的內角和

  1、請你們任意畫一個鈍角三角形,一個銳角三角形

  2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學到的知識來研究你所畫的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學生操作,匯報,課件演示)我們是用什么方法來研究的?

  3、學生模仿老師操作說理

  4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的'內角和呢?我們就可以說所有三角形的內角和都是180度。

  師:這也是三角形的一個特性,現在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內角和是180°)。

  (設計意圖:引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。)

 三、鞏固新知,拓展應用

  我們就用三角形的這一特性來解決一些問題

  1、兩個三角形拼成大三角形

 。1)每個三角形的內角和都是少度?

 。2)(課件把兩個三角形拼在一起)它的內角和是多少度?(這時學生答案又出現了180°和360°兩種。)師:究竟誰對呢

  2、一個三角形去掉一部分

 。1)這是一個三角形,他的內角和是多少度?我從中剪去一個三角形他的內角和是多少度?

  再剪去一個三角形呢?(課件演示)

  你們看這兩個三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來三角形的內角和的度數和他的大小形狀都無關。

 。2)我再把這個三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)

  你能利用我們三角形的內角和是180度來研究這個四邊形的內角和是多少度嗎?

 。3)如果五邊形,你還能求出他的度數嗎?

  (設計意圖:充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。)

  四、總結評價、延伸知識

  通過這節(jié)課的學習研究你掌握了哪些知識?我們是怎樣研究的呢?

  師:先研究的是特殊直角三角形的內角和是180度,接著通過量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內角和是180度。

 。ㄔO計意圖:幫助學生梳理本節(jié)課的知識脈絡。)

三角形內角和教案8

  教學要求

  1.通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。

  2.能運用三角形的內角和是180°這一規(guī)律,求三角形中未知角的度數。

  3.培養(yǎng)學生動手動腦及分析推理能力。

  教學重點 三角形的內角和是180°的規(guī)律。

  教學難點 使學生理解三角形的內角和是180°這一規(guī)律。

  教學用具 每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學過程:

  一、復習準備

  1.三角形按角的不同可以分成哪幾類?

  2.一個平角是多少度?1個平角等于幾個直角?

  3.如圖,已知∠1=35°,∠2=75°,求∠3的度數。

  二、教學新課

  1.投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)

  2.三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的內角和有什么規(guī)律。

  3.以小組為單位先畫4個不同類型的`三角形,利用手中的工具分別計算三角形三個內角的和各是多少度?

  4.指名學生匯報各組度量和計算的結果。你有什么發(fā)現?

  5.大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6.剛才我們計算三角形的內角和都是先測量每個角的度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

  提示學生,可以把三個內角拼成一個角,就只需測量一次了。

  7.請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8.三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內角和是180°)

  9.拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現了什么?(直角三角形和鈍角三角形的內角和也是180°)

  10.那么,我們能不能說所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11.老師板書結論:三角形的內角和是180°。

  12.一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?

  13.出示教材85頁做一做。讓學生試做。

  14.指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°-140°-25°=15°

  ∠2=180°(140°+25°)=15°

  三、鞏固練習

  1.88頁第9題

  這一題是不是只知道一個角的度數?另一個角是多少度,從哪看出來的?獨立完成,集體訂正。

  直角三角形中的一個銳角還可以怎樣算?

  2、88頁第10題

 、俚妊切斡惺裁刺攸c?(兩底角相等)

 、诹惺接嬎 180°-70°-70°=40°或

  180°-(70°×2)=40°

  2.88頁第10題

 、龠B接長方形、正方形一組對角頂點,把長方形、正方形分成兩個什么圖形?

 、谝粋三角形的內角和是180°,兩個三角形呢?

  四、布置作業(yè)

三角形內角和教案9

  【教學目標】

  1、知識與技能:

  (1)理解和掌握三角形的內角和是180°。

 。2)運用三角形的內角和知識解決實際問題和拓展性問題。

  2、過程與方法:

 。1)通過測量、撕拼、折疊等方法,探索和發(fā)現三角形三個內角的和等于180°。

 。2)知道三角形兩個角的度數,能求出第三個角的度數。

 。3)發(fā)展學生動手操作、觀察比較和抽象概括的能力。

  3、情感態(tài)度與價值觀:

  讓學生體驗數學活動的探索樂趣,通過教學中的活動體會數學的轉化思想。

  【教學重、難點】

  教學重點:理解掌握三角形的內角和是180°。

  教學難點:運用三角形的內角和知識解決實際問題。

  【教具準備】

  教學課件、各種三角形

  【教學過程】

一、創(chuàng)設情景,引出問題

  1、猜謎語:

  形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

  (打一圖形名稱)

  2、猜三角形

  師:老師這有1個三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會出現兩個直角嗎?為什么?

  3、引出課題。

  師:為什么不會出現兩個直角?今天我們就再次走進數學王國,探討三角形的內角和的奧秘。(板書課題)

  二、探究新知

  1、三角形的內角和

  師:三角形內角和指的是什么?

  2、猜一猜。

  師:這個三角形的內角和是多少度?

  3、驗證。

  讓學生用自己喜歡的方式驗證三角形的內角和是不是180°。

  4、學生匯報。

 。1)測量

  師:匯報的測量結果,有的.是180°,有的不是180°,為什么會出現這種情況?有沒有別的方法驗證?

 。2)剪拼

  A、學生上臺演示。

  B、請大家三人小組合作,用剪拼的方法驗證其它三角形。

  C、師演示。

 。3)折拼

  師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。

 。4)結論:三角形的內角和是180。

 。5)數學小知識。

  5、鞏固知識。

 。1)解決課前問題,為什么一個三角形不可能有兩個直角?一個三角形中可以有2個鈍角嗎?

  (2)把兩個小三角形拼在一起,問:大三角形的內角和是多少度。

  教師:為什么不是360°?

 三、解決相關問題

  師:接下來,利用三角形的內角和我們來解決一些相關的問題吧!

  1、看圖,求未知角的度數。

  2、判斷。

  3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數嗎?

  求出下面三角形各角的度數。

  (1)我三邊相等。

 。2)我是等腰三角形,我的頂角是96°。

 。3)我有一個銳角是40°。

  4、求四邊形、五邊形內角和。

四、總結。

  師:這節(jié)課你有什么收獲?

  五、板書(略)

三角形內角和教案10

  一、教學目標:

  1、理解掌握三角形內角和是180°,并運用這一性質解決一些簡單的問題。

  2、通過直觀操作的方法,引導學生探索并發(fā)現三角形內角和等于180°,在實驗活動中,體驗探索的過程和方法。

  3、在探索和發(fā)現三角形內角和的過程中獲得成功的體驗。

  二、教學重、難點:

  重點:探索并發(fā)現三角形內角和等于180°。

  難點:運用三角形內角和等于180°的性質解決一些實際問題。

  教具:課件、三角形若干。

  學具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

  三、教學過程

  (一)創(chuàng)設情境,導入新課

  我們已經學過了三角形的知識,我們來復習一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內角,而這三個內角的和就是這個三角形的內角和。那么誰來說一說什么是三角形的內角和?三角形有大有小,形狀也各不相同,那么它們的內角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細聽它們都說了什么?

  教師放課件。

  課件內容說明:一個大的直角三角形說:“我的個頭大,我的內角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們在爭論什么嗎?(它們在爭論誰的內角和大。)誰能說一說你的想法?(學生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內角和”。

 。ò鍟n題:三角形內角和)

 。ǘ┳灾魈骄浚l(fā)現規(guī)律

  1、探究三角形內角和的.特點。

  (1)檢查作業(yè),并提出要求:

  昨天老師讓每位學生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數,都完成了嗎?拿出來吧,一會我們要算出三角形的內角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

  小組活動記錄表

  小組成員的姓名

  三角形的形狀

  每個內角的度數

  三角形內角的和

 。ㄒ螅禾钔瓯砗,請小組成員仔細觀察你發(fā)現了什么?)

 、谛〗M合作。

  會使用表格了嗎?下面我們就以小組為單位,按照要求把結果填在小組長手中的表格內。

  各組長進行匯報。發(fā)現了三角形的內角和都是180°左右。

  師:實際上,三角形三個內角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數據。

  2、驗證推測。

  那么同學們有沒有什么辦法知道三角形的內角和就是180°呢?大家可以討論一下,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學們在下面操作進行體驗,再用課件演示把三個內角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學生也動手試一試。

  通過我們的驗證我們可以得出三角形的內角和是180°。

  板書:(三角形內角和等于180°。)

  3、師談話:三個三角形討論的問題現在能解決了嗎?你現在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

  4、同學們還有什么疑問嗎?大家想一想我們知道了三角形內角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個銳角等于30°,求另一個銳角。

  生獨立做,再訂正格式、以及強調不要忘記寫度。

  小結:同學們有沒有不明白的地方?如果沒有我們來做練習。

 。ㄈ╈柟叹毩,拓展應用

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  說明:一個鈍角三角形說:我的兩個銳角之和大于90°。

  一個直角三角形說:我的兩個銳角之和正好等于90°。讓學生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運用三角形內角和是180°計算出各自的內角和。你能推算出多邊形的內角和嗎?

  三角形內角和180度是科學家帕斯卡12歲時發(fā)現的。我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現。

 。ㄋ模┱n堂總結

  讓學生說說在這節(jié)課上的收獲!

三角形內角和教案11

  一、教材分析:

  教材創(chuàng)設了一個有趣的問題情境,以此激發(fā)學生的興趣,引出探索活動。首先,教師應使學生明確“內角”的意義,然后引導學生探索三角形內角和等于多少。大多數學生會想到用測量角的方法,此時就可以安排小組活動。每組同學可以畫出大小、形狀不同的若干個三角形,分別量出三個內角的度數,并求出它們的和,填寫在教材提供的表中。最后發(fā)現,大小、形狀不同的三角形,每一個三角形內角和都在180°左右。三角形的內角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內角撕下來,再拼在一起,組成一個平角,因此三角形內角和是180度。二是把三個內角折疊在一起,發(fā)現也能組成一個平角。每個活動都要使學生動手試一試,加深對三角形內角和的認識,體驗三角形內角和性質的探索過程。

  二、學生狀況分析:

  學生在本課學習前已經認識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經知道了兩塊三角尺上的每一個角的度數,學生課上對數學知識、能力和思考問題的角度有一定的差異,因此比較容易出現解決問題的策略多樣化。

  三、學習目標:

  1.通過測量、撕拼、折疊等方法,探索和發(fā)現三角形三個內角的和等于180°。

  2.知道三角形兩個角的度數,能求出第三個角的度數。

  3.發(fā)展學生動手操作、觀察比較和抽象概括的能力。體驗數學活動的探索樂趣,體會研究數學問題的'思想方法。

  4.能應用三角形內角和的性質解決一些簡單的問題。

  四、教具、學具準備:

  課件、6張三角形的紙、學生準備任意三角形。

  五、教學過程:

 。ㄒ唬┰O疑導入(2分鐘)

  師:在平的數學學習中,我們經常會使用一種工具——三角尺。(課件出示兩個三角尺)每個三角尺里都有三個角,我們把它叫內角。(板書內角)為了方便老師分別給兩個三角尺的內角編上號,誰能告訴我它們分別是多少度?

  師:請同學們仔細觀察比較一下,這兩個三角形有什么共同之處?

  生:它們的內角和都是180°。

  師:你是怎么得出180°的?

  生:30°+60°+90°=180°

  師:那第二個呢?

  生:45°+45°+90°=180°

  師:同學們,通過剛才的算一算,我們得到這兩個直角三角形的內角和都是180°,由此你想到什么呢?(這兩個直角三角形的內角和都是180°,那其他的三角形呢?)

  生A:其他三角形的內角和也是180°

 。ǘ﹦邮植僮,探究問題,以動啟思(20分鐘)

  1、師:這只是我們的一種猜測,三角形的內角和是否真的等于180°,還需要我們去驗證。接下來,我們就來驗證三角形的內角和,老師為大家準備了1號——6號6個三角形,下面請每個同學選擇一個三角形來驗證。想一想,你準備用什么樣的方法來驗證三角形的內角和,然后開始驗證。

 。1)小組合作,討論驗證方法

 。2)匯報驗證方法、結果

  現在我們一起交流一下驗證的結果,交流的時候,你先介紹一下驗證的是幾號三角形,然后說一說是什么三角形,最后說一說內角和是多少。

  師:同學們我、其實剛才我在驗證的時候很多同學有的還是量一量的方法,從剛才過程中來看量一量的方法還是有誤差,所以老師建議大家可以是有更加準確、簡便的方法來驗證。

  師:好,請同學們觀察大屏幕,這些三角形的內角和都是180°,那么請問,現在我們能不能以下結論:所以的三角形的內角和都是180°呢?

  生:可以

  師:難道你們都沒有懷疑這是老師故意安排好的呢?(沒有)那我告訴你們這就是老師故意安排好的,或許也是一種巧合。我們在科學研究的道路上就要敢于質疑的精神,接下來我們怎么辦?(我們應該在找一些三角形驗證)這個建議非常好,找一些任意三角形這樣才有說服力。

  師:每個同學都準備的三角形帶了嗎?下面就請同學來驗證你們自己帶來的三角形的內角和究竟是多少度。學生匯報交流。

  同學們我們這樣驗證,驗證完嗎?(驗證不完)

  師:剛才我們通過算一算、拼一拼、折一折的方法,不管是老師提供的三角形還是你們自己準備的三角形這些直角、銳角、鈍角三角形的內角和都是180°,那么我們可以概括成什么呢?

  生:我們發(fā)現每個三角形的三個內角和都是180°。

  課件出示結論:三角形的內角和是180°)。

  師:看來我們的猜測是正確的,現在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現:“三角形的內角和是1800”。(板書:三角形的內角和是1800

 。ㄋ模╈柟叹毩暎海15分鐘)

  學會了知識,我們就要懂得去運用。下面,我們就根據三角形內角和的知識來解決一些相關的數學問題。(課件)

  師:一塊三角尺的內角和180°,兩塊同樣的三角尺拼成的一個大三角形的內角和又是多少呢?

  師:把大三角形平均分成兩份。它的(指均分后的一個小三角形)內角和是多少度?(生有的答90 °,有的180 °。)

  師:哪個對?為什么?

  生:180°,因為它還是一個三角形。

  師:每個小三角形的度數是180°,那么這樣的兩個小三角形拼成一個大三角形,內角和是多少度?這時學生的答案又出現了180°和360°兩種。

  師:究竟誰對呢?大家可以在小組內拼一拼,進行討論

  生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內角和總是180°。

  生2:我發(fā)現兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內角和還是180°,不是360°。

  師:三角形不論位置、大小、形狀如何,它的內角和總是180°

  1、三角形ABC是等腰三角形,角A是頂角等于50度,角B=?角C=?

  教師引導學生復習等腰三角形的特征,再讓學生談談想法。

  教師匯總解法:

  180度-50度=130度130度÷2度=65度

  知識拓展:三角形ABC是等腰三角形,角B是底角等于50度,頂角角A=?(學生自主完成匯報結果)教師匯總解法:

  50度×2=100度180度-100度=80度

  2、一個直角三角形,一個銳角為35度,求另一個銳角的度數。

  教師帶領學生復習直角三角形的特征。(指名匯報)解法不唯一,只要學生思路正確老師應及時給與肯定。教師匯總解法:

  (1)180度-90度=90度90度-35度=55度

  (2)180度-35度=145度145度-90度=55度

  (3)90度+35度=125度180度-125度=55度

  (4)90度-35度=55度

  3、下面的說法對嗎?

  1)鈍角三角形的兩個銳角之和大于90度。()

  2)大三角形的內角和比小三角形的內角和大。()

  3)一個直角三角形中最多有一個直角。()

  學生自主理解題意,教師引導學生說出對或錯的原因。

  4、老師這還有一個難題需要解決,同學們愿意接受挑戰(zhàn)嗎?

  師:老師手里有一個信封,信封里露出一來個角,這個角的度數是45度,請同學們判斷一下,隱藏在信封里的三角形是什么三角形?

  師:信封里還露出一來個角,這個角的度數是45度,它是這個三角形內角中最小的銳角,請同學們判斷一下,隱藏在信封里的三角形是什么三角形?

  5、想一想,下面圖形的內角和分別是多少?

  學生小組討論如何分割,教師巡視并參與討論,討論完后小組匯報,指名板演。

 。ㄎ澹┱n堂小結

  師:一節(jié)課快要結束了,那么我們回想一下這節(jié)課你有什么收獲,什么感想?

三角形內角和教案12

  教學內容:

  p.28、29

  教材簡析:

  本節(jié)課的教學先通過計算三角尺的3個內角的度數的和,激發(fā)學生的好奇心,進而引發(fā)三角形內角和是180度的猜想,再通過組織操作活動驗證猜想,得出結論。

  教學目標:

  1、讓學生通過觀察、操作、比較、歸納,發(fā)現三角形的內角和是180。

  2、讓學生學會根據三角形的內角和是180 這一知識求三角形中一個未知角的度數。

  3、激發(fā)學生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。

  教學準備:

  三角板,量角器、點子圖、自制的三種三角形紙片等。

  教學過程:

  一、提出猜想

  老師取一塊三角板,讓學生分別說說這三個角的度數,再加一加,分別得到這樣的.2個算式:90+60+30=180,90+45+45=180

  看了這2個算式你有什么猜想?

 。ㄈ切蔚娜齻角加起來等于180度)

  二、驗證猜想

  1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數,再把三個角的度數相加。

  老師注意巡視和指導。交流各自加得的結果,說說你的發(fā)現。

  2、折、拼:學生用自己事先剪好的圖形,折一折。

  指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現:三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。

  繼續(xù)用該方法折鈍角三角形,得到同樣的結果。

  直角三角形的折法有不同嗎?

  通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數和也是180度。

  3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。

  在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。

  小結:我們可以用多種方法,得到同樣的結果:三角形的內角和是180。

  4、試一試

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,結果相同嗎?

  三、完成想想做做

 。薄⑺愠鱿旅婷總三角形中未知角的度數。

  在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。

  指出:在計算的時候,我們可根據具體的數據選擇更佳的算法。

  2、一塊三角尺的內角和是180 ,用兩塊完全一樣的三角尺拼成一個三角形,這個三角形的內角和是多少度?

  可先猜想:兩個三角形拼在一起,會不會它的內角和變成1802=360 呢?為什么?

  然后再分別算一算圖上的這三個三角形的內角和。得出結論:三角形不論大小,它的內角和都是180 。

  3、用一張正方形紙折一折,填一填。

  4、說理:一個直角三角形中最多有幾個直角?為什么?

  一個鈍角三角形中最多有幾個直角?為什么?

  四、布置作業(yè)

  第4、5題

三角形內角和教案13

  教材分析

  教材的小標題為“探索與發(fā)現”,說明這部分內容要求學生自主探索,并發(fā)現有關三角形內角和性質。

  教材創(chuàng)設了一個有趣的問題情境,以此激發(fā)學生的興趣,引出探索活動。首先,教師應使學生明確“內角”的意義,然后引導學生探索三角形內角和等于多少。大多數學生會想到用測量角的方法,此時就可以安排小組活動。每組同學可以畫出大小、形狀不同的若干個三角形,分別量出三個內角的度數,并求出它們的和,填寫在教材提供的表中。最后發(fā)現,大小、形狀不同的三角形,每一個三角形內角和都在180°左右。

  三角形的內角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內角撕下來,再拼在一起,組成一個平角,因此三角形內角和是180°。二是把三個內角折疊在一起,發(fā)現也能組成一個平角。每個活動都要使學生動手試一試,加深對三角形內角和的認識,體驗三角形內角和性質的探索過程。

  另外,教材還從兩個方面引導學生應用三角形的內角和:一是根據三角形中已知的兩個角的度數,求另一個角的度數;二是直角三角形里的兩個銳角和等于90°,鈍角三角形里的兩個銳角和小于90°。

  學情分析

  學生在前面的學習中已經認識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經知道了兩塊三角尺上的每一個角的度數,知道了平角是180°;學生通過前幾年的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的.習慣,所以在學生具備這些數學知識和能力的基礎上,來引導學生探索和發(fā)現三角形內角和是180°這一性質。

  要讓學生明確一個三角形分成兩個小三角形后,每個三角形內角和還是180°,兩個小三角形拼成一個大三角形,大三角形的內角和也是180°。

  教學目標

  1、知識目標:讓學生探索與發(fā)現三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。

  2、能力目標:培養(yǎng)學生動手操作和合作交流的能力,促進掌握學習數學的方法。

  3、情感目標:培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數學應用數學的興趣。

  教學重點和難點

  教學重點:掌握三角形的內角和是180°,會應用三角形的內角和解決實際問題。

  教學難點:讓學生經歷探索和發(fā)現三角形的內角和是180°的過程。

  教學過程:

  (一)、激趣導入:

  1、認識三角形內角

  我們已經認識了什么是三角形,誰能說出三角形有什么特點?

  (三角形是由三條線段圍成的圖形,三角形有三個角,…。)

  請看屏幕(課件演示三條線段圍成三角形的過程)。

  三條線段圍成三角形后,在三角形內形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角

  形的內角。(這里,有必要向學生直觀介紹“內角”。)

  2、設疑激趣

  現在有兩個三角形朋友為了一件事正在爭論,我們來幫幫它們。(播放課件)

  同學們,請你們給評評理:是這樣嗎?

  現在出現了兩種不同的意見,有的同學認為大三角形的內角和大,還有部分同學認為兩個三角形的內角和的度數都是一樣的。那么到底誰說得對呢?

  這節(jié)課我們就一起來研究這個問題。(板書課題:三角形的內角和)

  (二)、動手操作,探究新知

  1、探究特殊三角形的內角和

  師拿出兩個三角板,問:它們是什么三角形?

  (直角三角形)

  請大家拿出自己的兩個三角尺,在小組內說說每一個三角尺上三個角的度數,并求出這兩個直角三角形的內角和。

 。ㄓ捎趯W生在四年級(上冊)教材里已經知道了兩塊三角尺上的每一個角的度數,所以能夠很快求得每塊三角尺的3個角的和都是180°)

  從剛才兩個三角形內角和的計算中,你們發(fā)現了什么?

  (這兩個三角形的內角和都是180°)。

  這兩個三角形都是直角三角形,并且是特殊的三角形。

  2、探究一般三角形內角和

 。1).猜一猜。

  猜一猜其它三角形的內角和是多少度呢?(可能是180°)

  (2).操作、驗證一般三角形內角和是180°。

  所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  (可以先量出每個內角的度數,再加起來。)

  測量計算,是嗎?那就請四人小組共同計算吧!

  老師讓每個同學都準備了直角三角形、銳角三角形和鈍角三角形三種不同的三角形,并量出了每個內角的度數,下面就請同學們在小組內每種各選一個求出它們的內角和,把結果填在表中:

  (3)小組匯報結果。

  請各小組匯報探究結果

  提問:你們發(fā)現了什么?

  小結:通過測量計算我們發(fā)現每個三角形的三個內角和都在180°左右。

  3繼續(xù)探究

 。1)動手操作,驗證猜測。

  沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學們動腦筋想一想,能通過動手操作來驗證嗎?

 。ㄏ刃〗M討論,再匯報方法)

  大家的辦法都很好,請你們小組合作,動手操作。

 。2)學生操作,教師巡視指導。(3)全班交流匯報驗證方法、結果。

  學生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)

  我們可以得出一個怎樣的結論?(三角形的內角和是180°)

  引導學生通過剪拼、撕拼和折拼的方法發(fā)現:各類三角形的三個內角都可以拼成一個平角,使學生證實三角形內角和確實是180°,測量計算有誤差。

  5、辨析概念,透徹理解。

 。ǔ鍪疽粋大三角形)它的內角和是多少度?

 。ǔ鍪疽粋很小的三角形)它的內角和是多少度?

  一塊三角尺的內角和180°,兩塊同樣的三角尺拼成的一個大三角形的內角和又是多少呢?(學生有的答360°,有的180°.)

  把大三角形平均分成兩份。每個小三角形的內角和是多少度?(生有的答90°,有的180°。)

  這兩道題都有兩種答案,到底哪個對?為什么?

 。▽W生個個臉上露出疑問。)

  大家可以在小組內用三角尺拼一拼,也可以畫一畫,互相討論。

  經過一翻激烈的討論探究后,學生發(fā)現:三角形不論位置、大小、形狀如何,它的內角和總是180°

 。ㄈ┬〗Y

  剛才同學們用很多方法證明了無論是什么樣的三角形內角和都是180°,現在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現:“三角形的內角和是180°”。

  (四)、鞏固練習,拓展應用

  下面,我們就根據三角形內角和的知識來解決一些相關的數學問題。(課件)

  1、求三角形中一個未知角的度數。

 。1)在三角形中,已知∠1=85°,∠2=65°,求∠3。

 。2)在三角形中,已知∠1=98°,∠2=49°,求∠3。

  2、判斷

  (1)一個三角形的三個內角度數是:90°、75°、25°。()

 。2)一個三角形至少有兩個角是銳角。()

 。3)鈍角三角形的內角和比銳角三角形的內角和大。()

 。4)直角三角形的兩個銳角和等于90°。()

  3、解決生活實際問題。

 。1)爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是70°,它的頂角是多少度?

 。2)交通警示牌“讓”為等邊三角形,求其中一個角的度數。

  4、拓展練習。

  利用三角形內角和是180°,求出下面四邊形、六邊形的內角和?(課件)

  小組的同學討論一下,看誰能找到最佳方法。

  學生匯報,在圖中畫上虛線,教師課件演示。

  請同學們自己在練習本上計算。

  (四)、課堂總結

  通過這節(jié)課的學習,你有哪些收獲?

三角形內角和教案14

  【教學內容】:人教版第八冊第85頁例5及“做一做”和練習十四的第9、10、12題。

  【課程標準】:認識三角形,通過觀察、操作、了解三角形內角和是180度。

  【學情分析】:

  學生已經掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內角和是多少度,學生是不陌生的,因為學生有以前認識角、用量角器量三角板三個角的度數以及三角形的分類的基礎,學生也有提前預習的習慣,很多孩子都能回答出三角形的內角和是180度,但是他們卻不知道怎樣才能得出三角形的內角和是180度。另外,經過三年多的學習,學生們已具備了初步的動手操作能力、主動探究能力以及小組合作的能力。

  【學習目標

  1、結合具體圖形能描述出三角形的內角、內角和的含義。

  2、在教師的引導下,通過猜測和計算能說出三角形的內角和是180°。

  3、在小組合作交流中,通過動手操作,實驗、驗證、總結三角形的內角和是180°,同時發(fā)展動手動腦及分析推理能力。

  4、能運用三角形的內角和是180°這一規(guī)律,求三角形中未知角的度數。

  【評價任務設計

  1、利用孩子已有經驗,通過教師的提問和引導以及學生的直觀觀察,說出三角形的內角、內角和的含義。達成目標1。

  2、在教師的引導下,以游戲的形式學生通過猜測三角形的內角和是多少度,然后通過計算說出三角形的內角和是180°的結論。達成目標2。

  3、在小組合作交流中,通折一折、拼一拼和擺一擺的動手操作、實驗、驗證并歸納總結出三角形的內角和是180°。達成目標3。

  4、能運用三角形的內角和是180°這一規(guī)律,求三角形中未知角的度數。通過“做一做”和習題第9、10、12題達成目標4和目標3。

  【重難點

  教學重點:探索和發(fā)現三角形的`內角和是180°。

  教學難點: 充分發(fā)揮學生的主體作用,自主探索和發(fā)現三角形的內角和是180°

  【教學過程】

  一、復習準備。

  1、三角形按角的不同可以分成哪幾類?

  2、一個平角是多少度?1個平角等于幾個直角?兩個三角板上各個角的度數?

  二、探究新知

 。ㄒ唬﹦(chuàng)設情境,生成問題,認識三角形的內角及內角和

  (播放課件)在圖形王國中,有一天,三角形家族里為“三角形內角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“你雖然有一個鈍角,可其它兩個角都很小。但是我的三個角都不是很小。我的內角和比你大”。直角三角形說:“別爭了,三角形的內角和是180°,我們的內角和是一樣大的!

  師:動畫片看完了,請大家想一想,什么是三角形的內角和?

  師引導學生說出三角形三個內角的度數和叫做三角形的內角和。

  多媒體展示:三條線段在圍成三角形后,在三角形內形成了三個角(課件閃爍三個角的弧線),我們把三角形內的這三個角,分別叫做三角形的內角(板書:內角),這三個內角的度數的和就叫做三角形的內角和。

 。達成目標1:利用多媒體播放動畫和孩子已有的經驗,通過教師的提問和引導,學生說出什么叫三角形的內角及內角和達成目標1。多媒體創(chuàng)設的情景也為目標二打好鋪墊

 。ǘ、引導猜測三角形的內角和是180度

  師:在課件展示的直角三角形、鈍角三角形、銳角三角形的對話中,你贊同誰的觀點?

  預設:學生回答直角三角形。

  師:你為什么這么認為呢?

  生:我是想三角板上三個角的度數是90度、45度、45度加起來是180度,90度、60度、30度加起來也是180度。

  (達成目標2:激發(fā)引導學生運用已有經驗猜三角形的內角和而不是盲目猜,激起學生的疑問和好奇心,這樣在教師的引導下,學生通過猜測三角形的內角和是多少度,然后通過計算說出三角形的內角和是180°的結論。)

  (三)、驗證三角形的內角和是180度

  1.確定研究范圍

  師:研究三角形的內角和,是不是應該包括所有的三角形?只研究這一個行不行?(不行)那就隨便畫,挨個研究吧。(學生反對)那該怎樣去驗證呢?請你們想個辦法吧!

  師:分類驗證是科學驗證的一種好方法,下面我們就用分類驗證的方法來驗證一下,看看三角形的內角和是不是180°?

  2.操作驗證

  教師讓每個學習小組拿出課前制作的各種各樣的三角形,先找到三個內角,在每個內角標上序號1、2、3。然后請任意用一個三角形,想辦法驗證我們的猜想。如果有困難,可以啟用老師提供的“智慧錦囊”或者尋求同學的幫助。

  智慧錦囊:

  (1)要知道三個內角的和,只要知道三個角分別是多少度就可以了,你覺得哪個工具可以測出角的度數?試一試。

 。2)180°的角是個特殊的角,它是個什么角?你能想辦法將這三個內角轉化成這樣的角嗎?

  3.匯報交流

  師:誰來匯報你的驗證結果?

  (1)測算法

  師小結:用量的方法驗證既然有誤差、不準,結論就難以讓人信服,那有沒有辦法更好地驗證我們的猜測呢?誰還有別的方法?

 。2)剪拼法

 。3)折拼法

  師小結:用拼和折的方法都能將三角形的三個內角轉化成一個平角,從而借助我們學過的平角知識證明三角形的內角和確實是180°,你們真會動腦筋!

  (4)推算法

 、侔岩粋長方形沿對角線分成兩個完全一樣的直角三角形。因為長方形的內角和是360°,所以一個直角三角形的內角和等于180°。(課件演示過程)

  師直角三角形的內角和已經證明了是180°,現在我們只要能證明:銳角三角形和鈍角三角形的內角和也是180°就可以了。

  課件演示

 、谝粋銳角三角形,從頂點往下畫一條垂線,將三角形分為兩個直角三角形,因為我們已經知道直角三角形的內角和是180°,所以兩個直角三角形的度數和就是360°,減去兩個直角的和180°,就是要證明的三角形內角和,肯定是180°。

  4.總結提煉

  師:孩子們,剛才我們通過“量——————推”的方法分類驗證了三角形的內角和是( )度?

  現在可以下結論了嗎?

  (板書:三角形三個內角和等于180°。)

  師:那在“三角形的爭吵中”誰是對的?

  (達成目標3。此環(huán)節(jié)讓學生通過“量——拼——折——推”的方法分類驗證了三角形的內角和是180度。此環(huán)節(jié)充分體現了學生學習的主動性。)

 。ㄋ模├萌切蝺冉呛褪180解決問題

  1、看圖,求出未知角的度數。

  2、書本85頁“做一做”

  在一個三角形中,∠1=140。,∠3=25。,求∠2的度數。

  (達成目標3和目標4:能運用三角形的內角和是180°這一規(guī)律,求三角形中未知角的度數。通過“做一做”達成目標3和目標4.)

  三、目標達成檢測方案:

  1、求出三角形各個角的度數。

  2、埃及金字塔建于4500年前的埃及古王朝時期,它是用巨大石塊修砌成的方錐形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各異,外表有四個側面,每個側面都是等腰三角形。人們量得這個三角形的一個底角是64度。

  四、課堂小結,提升認識

  同學們,這節(jié)課你有哪些收獲?我們是怎樣得到“三角形內角和等于180度”這個結論的?

  師:是啊,今天咱們不但知道了三角形的內角和是180°,更重要的是我們經歷了探究三角形內角和的驗證方法。咱們從猜想出發(fā),經過驗證(用量、拼、折、推等)得到了結論并利用結論解決了一些問題。孩子們,其實我們在不知不覺中已經走了數學家的探究歷程……希望同學們在今后的學習中大膽應用,勇于創(chuàng)新,做最棒的自己

三角形內角和教案15

  【教學目標】

  1.學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現"三角形內角和等于180度"的規(guī)律。

  2.在探究過程中,經歷知識產生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學重點】

  探究發(fā)現和驗證"三角形的內角和為180度"的規(guī)律。

  【教學難點】

  理解并掌握三角形的內角和是180度。

  【教具準備】

  PPT課件、三角尺、各類三角形、長方形、正方形。

  【學生準備】

  各類三角形、長方形、正方形、量角器、剪刀等。

  【教學過程】

  口算訓練(出示口算題)

  訓練學生口算的速度與正確率。

  一、謎語導入

  (出示謎語)

  請畫出你猜到的圖形。誰來公布謎底?

  同桌互相看一看,你們畫出的三角形一樣嗎?

  誰來說說,你畫出的是什么三角形?(學生匯報)

  (1)銳角三角形,(銳角三角形中有幾個銳角?)

  (2)直角三角形,(直角三角形中可以有兩個直角嗎?)

  (3)鈍角三角形,(鈍角三角形中可以有兩個鈍角嗎?)

  看來,在一個三角形中,只能有一個直角或一個鈍角,為什么不能有兩個直角或兩個鈍角呢?三角形的三個角究竟存在什么奧秘呢?這節(jié)課,我們一起來學習"三角形的內角和。"(板書課題:三角形的內角和)

  看到這個課題,你有什么疑問嗎?

  (1)什么是內角?有沒有同學知道?

  內:里面,三角形里面的角。

  三角形有幾個內角呢?請指出你畫的三角形的內角,并分別標上∠1、∠2、∠3.

  (2)誰還有疑問?什么是內角和?誰來解釋?(三個內角度數的和)。

  (3)大膽猜測一下,三角形的內角和是多少度呢?

  【設計意圖】

  創(chuàng)設數學化的情境。學生用已經學的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣".這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣。

  二、探究新知

  有猜想就要有驗證,我們一起來探究用什么方法能知道三角形的內角和呢?

  1、確定研究范圍

  先請大家想一想,研究三角形的內角和,是不是應該包括所用的三角形?

  只研究你畫出的那一個三角形,行嗎?

  那就隨便畫,挨個研究吧?(太麻煩了)

  怎么辦?請你想個辦法吧。

  分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)

  2、探究三角形的內角和

  思考一下:你準備用什么方法探究三角形的內角和呢?

  小組合作:從你的學具袋中,任選一個三角形,來探究三角形的內角和是多少度?

  小組匯報:

  (1)量一量:把三角形三個內角的度數相加。

  直接測量的方法挺好,雖然測量有誤差,但我們知道了三角形的內角和在180°左右。究竟是不是一定就是180°呢?哪個小組還有不同的方法?

  (2)拼一拼:把三角形的三個內角剪下來,拼成了一個平角。

  能想到這種剪一剪拼一拼的方法,真不簡單。三個角拼在一起,看起來像個平角,究竟是不是平角呢?誰還有別的方法?

  (3)折一折:把三角形的三個角折下來,拼成了一個平角。

  這種方法真了不起,能借助平角的度數來推想三角形內角和是180°。

  總結:同學們動腦思考,動手操作,運用不同的方法來驗證三角形的內角和。這三種方法都很好,但在操作過程中,難免會有誤差,不太有說服力。我們能不能借助學過的圖形,更科學更準確的來驗證三角形的內角和?

  3、演繹推理的方法。

  正方形四個角都是直角,正方形內角和是多少度?

  你能借助正方形創(chuàng)造出三角形嗎?(對角折)

  把正方形分成了兩個完全一樣的直角三角形,每個直角三角形的內角和:360°÷2=180°

  再來看看長方形:沿對角線折一折,分成了兩個完全一樣的直角三角形,內角和:360°÷2=180°

  這種方法避免了在剪拼過程中操作出現的誤差,

  舉例驗證,你發(fā)現了什么?

  通過驗證,知道了直角三角形的內角和是180度。

  你能把銳角三角形變成直角三角形嗎?

  把銳角三角形沿高對折,分成了兩個直角三角形。

  一個直角三角形的內角和是180°,那么這個銳角三角形的內角和就是180°×2=360°了,對嗎?(360-180=180°)

  通過計算,我們知道了這個銳角三角形的內角和是180°,那么所有的銳角三角形的內角和都是180°嗎?你是怎么知道的?

  通過剛才的計算,你發(fā)現了什么?(銳角三角形內角和180°)

  鈍角三角形的內角和,你們會驗證嗎?誰來說說你的想法?180×2-90-90=180°

  通過驗證,你又發(fā)現了什么?(鈍角三角形內角和180°)

  4、總結

  通過分類驗證,我們發(fā)現:直角180,銳角180,鈍角180,也就是說:三角形的`內角和是180°。也驗證了我們的猜想是正確的。(板書)

  5、想一想,下面三角形的內角和是多少度?(小--大)

  你有什么新發(fā)現?(三角形的內角和與它的大小,形狀沒有關系。)

  【設計意圖】

  為了滿足學生的探究欲望,發(fā)揮學生的主觀能動性,通過獨立探究和組內交流,實現對多種方法的體驗和感悟。學生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發(fā)展而言,探究的過程比探究獲得的結論更有價值。

  三、自主練習

  1、在一個三角形中,如果想求一個角的度數,至少得知道幾個角的度數呢?(2個)那我們就試一試,挑戰(zhàn)第一關。(兩道題)

  2、算得真快!如果只知道一個角的度數,還能求出未知角的度數嗎?挑戰(zhàn)第二關。(三道題)

  3、說得真清楚,如果一個角的度數也不知道,你還能求出未知角的度數嗎?挑戰(zhàn)第三關。(一道題)

  師:同學們真了不起,從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,都能正確求出未知角的度數。

  4、學無止境,課下,請你利用三角形的內角和,探究一下四邊形、五邊形、六邊形的內角和各是多少度?

  【設計意圖】

  練習由淺入深,層層遞進。從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,要求學生求出未知角的的度數,梯度訓練,拓展思維。

  四、課堂總結

  同學們,回想一下,這節(jié)課我們學習了什么?通過這節(jié)課的學習,你有哪些收獲呢?

  真了不起,同學們不僅學到了知識,還掌握了學習的方法。"在數學的天地里,重要的不是我們知道什么,而是我們怎么知道的",在這節(jié)課上,重要的不是我們知道了三角形的內角和是180°,而是我們通過猜測,一步一步驗證,得到這個規(guī)律的過程。

  課后反思

  《三角形的內角和》是五四制青島版四年級上冊第四單元的信息窗二,本節(jié)課是在學生學習了與三角形有關的概念、邊、角之間的關系的基礎上,讓學生動手操作,通過一系列活動得出"三角形的內角和等于180°".

  本著"學貴在思,思源于疑"的思想,這節(jié)課我不斷創(chuàng)設問題情境,讓學生去猜想、去探究、去發(fā)現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發(fā)展空間觀念。"問題的提出往往比解答問題更重要",其實三角形內角和是多少?大部分的學生已經知道了這一知識,所以很輕松地就可以答出。但是只是"知其然而不知其所以然".

  為此,我設計了大量的操作活動:畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環(huán)節(jié)。在操作活動中,老師有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動過程,生動又形象,吸引學生的注意力。使學生感受到每種活動的特點,這對他認識能力的提高是有幫助的。

  最后通過習題鞏固三角形內角和知識,培養(yǎng)學生思維的廣闊性,為了強化學生對這節(jié)課的掌握,從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,要求學生求出未知角的的度數,層級練習,步步加深,梯度訓練。

  教學是遺憾的藝術。當然本節(jié)課的教學中,存在許多不盡如意之處:

  1、讓學生養(yǎng)成良好的學具運用習慣,特別是小組學生在合作操作時,應有效指導,對學生及時評價,激勵表揚,調動學生學習的積極性與主動性。

  2、學生在介紹剪拼的方法時,可以讓介紹的學生先上臺演示是如何把內角拼在一起,這樣學生在動手操作的時候就可以節(jié)省時間。

  3、在做練習時,為了趕時間,題出現的頻率較快,留給學生計算思考的時間不足,可能只照顧到好學生的進程,沒有關注全體學生,今后應注意這一點。

  教學是一門藝術,上一節(jié)課容易,上好一節(jié)課談何容易,在今后的課堂教學中,只有勤學、多練,才能更好的為學生的學習和成長服務,讓自己的人生舞臺綻放光彩。

【三角形內角和教案】相關文章:

三角形內角和教案03-29

《三角形內角和》數學教案12-26

《三角形內角和》說課稿07-14

三角形的內角和說課稿07-09

三角形內角和教案匯編9篇05-15

三角形內角和教案集錦五篇05-16

《三角形的內角和》教學反思03-11

三角形的內角和教學反思03-27

數學三角形的內角教案03-26