《完全平方公式》教案
作為一名辛苦耕耘的教育工作者,常常要寫一份優(yōu)秀的教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。優(yōu)秀的教案都具備一些什么特點呢?下面是小編為大家整理的《完全平方公式》教案,僅供參考,歡迎大家閱讀。
《完全平方公式》教案1
一、教學目標
【知識與技能】
能夠運用完全平方公式對簡單的多項式進行因式分解
【過程與方法】
通過對實例的探究與合作,鍛煉公式推導與總結能力
【情感態(tài)度與價值觀】
在合作探究中,體會到數學學習的樂趣,加強交流合作能力
二、教學重難點
【教學重點】
完全平方公式
【教學難點】
完全平方公式的推導過程與應用
三、教學過程
(1)情景設置,設疑導入
老師展示正方形廣場圖片,并告知已知條件:邊長為a的正方形廣場兩個鄰邊有5米寬的道路,形成一個較大的正方形廣場,嘗試用不同方法求解整個廣場(包括道路)的`大小。
預設:①(a+5)(看作一個整體)
、赼+5+2×5×a(看作幾個部分)
(2)師生合作,新課教學
由學生板書得出等式:(a+5)=a+5+2×5×a,提出問題:如果將5米寬,換成b米寬又能得到什么呢?(小組交流討論)
得出結論:
進行證明:
得到完全平方公式,記憶口訣:首平方,尾平方,首尾兩倍放中央。
(3)鞏固提升,深化新知
(4)小結作業(yè),及時反思
小結:請同學們談一談今天這節(jié)課的收獲:
1.學會了完全平方公式
2.學會了簡易計算平方式的能力
3.提高了與同學們合作探究的能力,體會到了合作的樂趣
作業(yè):
公式拓展:a+b=(a+b)+()
91=()
及時復習鞏固完全平方公式,并在生活中找一找完全平方公式的運用
《完全平方公式》教案2
一、教學目標
(1)知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。
(2)過程與方法目標;學生探究完全平方公式,體會數形結合。
二、教學重點;公式結構及運用。
三、教學難點;公式中字母AB的含義理解與公式正確運用。
四、教具;自制長方形、正方形卡片
五、教學過程;
教師活動
學生活動
1、1、創(chuàng)設情景,提出問題,引入課題
(1)想一想
一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。
(1)第一天,a個男孩去看老人,老人共給他們幾塊糖?
(2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?
(3)第三天,()個孩子一起去看望老人,老人共給他們多少塊糖?
(4)第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)
1、1、學生四人一組討論。
填空:
(1)第一天給孩子塊糖。
(2)第二天給孩子塊糖。
(3)第三天給孩子塊糖。
男孩子第三天多得塊糖
女孩第三天多得塊糖。
教師活動
學生活動
(2)做一做、請同學拼圖
a
教師巡視指導學生拼圖
2、2、教師提問:
(1)、大正方形邊長?(2)每一塊卡片的'面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現什么?
3、3、想一想
(1)(a+b)用多項式乘法法則說明
(2)(a-b)
4、請同學們自己敘述上面的等式
5、說一說,ab能表示什么?
(□+○)□+2□○+○
6、算一算
(1)(2X-3)(2)(4X+5Y)
請同學們分清ab
7、練一練
(1)(2X-3Y)(2)(2XY-3X)
8、試一試(a+b+c)
作業(yè):P1351、2
學生2人一組拼圖交流
2、學生觀察思考
(1)大正方形邊長?
(2)四塊卡片的面積分別是
(3)大正方形的總面積是多少?
3、(1)學生運用多項式乘法法則推導
(a+b)=a+2ab+b說出每一步運算理由
(2)學生自己探究交流
4、學生用語言敘述公式
5、師生共同a、b對應項教師書寫
6、學生獨立完成練一練展示結果
7、學生四人一組討論交流
8、有興趣的同學可以探
《完全平方公式》教案3
一、教材分析
完全平方公式是初中代數的一個重要組成部分,是學生在已經掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。
本節(jié)課是繼乘法公式的內容的一種升華,起著承上啟下的作用。在內容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎,環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉化等重要的思想方法。
二、學情分析
多數學生的抽象思維能力、邏輯思維能力、數學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發(fā)展學生的合情推理能力、合作交流能力和數學化能力。
三、教學目標
知識與技能
利用添括號法則靈活應用乘法公式。
過程與方法
利用去括號法則得到添括號法則,培養(yǎng)學生的逆向思維能力。
情感態(tài)度與價值觀
鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的`習慣,提高學生的合作交流意識和創(chuàng)新精神。
四、教學重點難點
教學重點
理解添括號法則,進一步熟悉乘法公式的合理利用.
教學難點
在多項式與多項式的乘法中適當添括號達到應用公式的目的.
五、教學方法
思考分析、歸納總結、練習、應用拓展等環(huán)節(jié)。
六、教學過程設計
師生活動
設計意圖
一.提出問題,創(chuàng)設情境
請同學們完成下列運算并回憶去括號法則.
。1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括號法則:
去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不改變符合;如果括號前是負號,去掉括號后,括號里的各項都改變符合.
也就是說,遇“加”不變,遇“減”都變.
二、探究新知
把上述四個等式的左右兩邊反過來,又會得到什么結果呢?
。1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)
。3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)
左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?
(學生分組討論,最后總結)
添括號法則是:
添括號時,如果括號前面是正號,括到括號里的各項都不變符號;如果括號前面是負號,括到括號里的各項都改變符號.
也是:遇“加”不變,遇“減”都變.
請同學們利用添括號法則完成下列練習:
1.在等號右邊的括號內填上適當的項:
。1)a+b-c=a+( ) (2)a-b+c=a-( )
。3)a-b-c=a-( ) (4)a+b+c=a-( )
判斷下列運算是否正確.
。1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
總結:添括號法則是去括號法則反過來得到的,無論是添括號,還是去括號,運算前后代數式的值都保持不變,所以我們可以用去括號法則驗證所添括號后的代數式是否正確.
三、新知運用
有些整式相乘需要先作適當的變形,然后再用公式,這就需要同學們理解乘法公式的結構特征和真正內涵.請同學們分組討論,完成下列計算.
例:運用乘法公式計算
。1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
。3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
四.隨堂練習:
1.課本P111練習
2.《學案》101頁——鞏固訓練
五、課堂小結:
通過本節(jié)課的學習,你有何收獲和體會?
我們學會了去括號法則和添括號法則,利用添括號法則可以將整式變形,從而靈活利用乘法公式進行計算.
我體會到了轉化思想的重要作用,學數學其實是不斷地利用轉化得到新知識,比如由繁到簡的轉化,由難到易的轉化,由已知解決未知的轉化等等.
六、檢測作業(yè)
習題14.2: 必做題: 3 、4 、5題
選做題:7題
知識梳理,教學導入,激發(fā)學生的學習熱情
交流合作,探究新知,以問題驅動,層層深入。
歸納總結,提升課堂效果。
作業(yè)檢測,檢測目標的達成情況。
《完全平方公式》教案4
一、教學目標:
經歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數學學習活動,培養(yǎng)學生自主探究能力,勇于創(chuàng)新的精神和合作學習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運用;難點是完全平方公式的運用。
二、教學過程:
1.檢查學生的“預習知識樹”,導入課題:
師:前面學習了平方差公式,同學們對平方差公式的結構特點、運用以及學習公式的意義有了初步的認識。今天,我們繼續(xù)學習、研究另一種“乘法公式”――完全平方公式。請拿出你的“預習知識樹”,小組內互查并交流,在預習中有疑問的同學請詢問。
(活動:老師巡視、檢查學生的預習情況,并解答學生在預習中存在的問題)生:(互查、討論“預習知識樹”,有問題的詢問問題。)師:(老師點評學生預習情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預習提到課前,利用“知識樹”引導學生自學,學生可以獨立思考、自主學習,也可合作交流、討論研究,這樣預習會更充分,聽講時就能有準備、有選擇;一上課,老師就檢查“預習知識樹”,了解學生新課學習情況,適當點撥,在課堂上留出更多的時間大量拓展、提高,發(fā)展學生的'能力。
2.自學檢測,制造通用工具:師:下面進行自學檢測.計算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。
(活動:投影顯示練習題。)生:(四人到黑板上板演,答錯了,由學生糾正,老師再點評。)師:觀察練習,公式中的a、b可代表什么?
生:可以表示一個數,也可以表示一個單項式、多項式。
說明:點評時,老師反復引導學生分清題目中哪部分相當于公式中的a,哪部分相當于公式中的b,就是讓學生明確“公式中的a、b可表示數,也可表示一個單項式、多項式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學習平方差公式時,學生應該認識到這個道理,在這里再次強化。
師:說得非常好,明確“公式中的a、b可以表示一個數,也可以表示一個單項式、多項式”的變化規(guī)律,就能正確運用公式解題了。顯然,剛做的練習題是由公式變化來的,若是變下去,能變多少道題?
生:無數道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導學生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無數道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規(guī)律才能更好地解題。
師:你會變了嗎?請各小組編題。(活動:四人小組先在組內討論、交流,再推選完成最快的兩個小組出示題目,其他小組同學練習。)說明:引導學生現場出題,一是激發(fā)學生興趣、活躍氣氛,二是驗證變化規(guī)律。
師:下面思考,如何計算:(a+b+c)2生1:可根據多項式乘以多項式來計算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。
師:不錯。還有其他方法嗎?生2:也可以把其中的(a+b)兩項看成一項,變成[(a+b)+c]2的形式,就能直接運用完全平方公式了。
師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習。
生:(緊張地做題,同時找兩個學生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會做嗎?
生:(齊答)會。師:怎么辦?生1:把其中(a+b)看做一項,(c+d)看做一項,還是利用完全平方公式解題。
生2:還有其他分組方式,如把(a+c)看做一項,(b+d)看做一項,也能直接運用公式解題。
師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?
生:無數道。師:最終是幾道題?生:(齊答)一道題。師:現在,老師相信每個學生都會解這樣的題了。課下,請同學們思考:如果把(a+b)2的指數變化一下,又可以變出多少道題,你能計算出來嗎?
(活動:投影顯示一組題目,如(a+b)3、(a+b)4……)說明:這就是老師進一步利用這個例子論證“公式中的a、b可表示數,也可表示一個單項式、多項式或其他的式子”的變化規(guī)律。
3.通過大量的習題驗證通用工具,學生并且自造通用工具。
師:通過前面的檢測,看出同學們已經基本掌握了完全平方公式。下面進入達標檢測。
(活動:投影顯示達標檢測題)1.填空:
、(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。
2.計算:
①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計算:(x+2y+3)(x+2y-3)生:(積極、主動地在作業(yè)本上完成上面練習題。)師:(巡視,批閱完成快的學生的作業(yè),最后集體點評,只講不會的。)說明:第2①題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉化為-(3a2-2)2,直接運用公式計算;第2④題把(n+3)看做a
、n看做b,逆用平方差公式也是一種解法,同時訓練學生的逆向思維;第3題是下節(jié)課訓練內容,在這里可以提前,引導學生通過變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進一步驗證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學生能較熟練掌握,逐步達到腦算的層次,水到渠成,能力自然提高,學生就會自造“通用工具”了。
4.嫁接“知識樹”,推薦作業(yè)。師:本節(jié)課你有什么收獲?還有什么問題嗎?
(活動:再次投影本節(jié)課“知識樹”。)生:這節(jié)課我們學習、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項式也可以是多項式,能運用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè).[投影顯示]思考題:計算(a+b+c)2、(a+b+c+d)2的結果,觀察有什么規(guī)律,感興趣的同學還可計算(a+b)3、(a+b)4的結果,你又能發(fā)現什么規(guī)律.預習指導:①課本第38-39頁內容,重點研究例3兩個題目的解題方法,能嘗試獨自解答課后隨堂練習或習題,②設計下節(jié)課“知識樹”,優(yōu)化本單元“知識樹”。說明:本環(huán)節(jié)是將本節(jié)課“知識樹”
移植到乘法公式的單元“知識樹”上,整體構建知識,同時更加強化了學生的“能力樹”。作業(yè)是推薦性的作業(yè),達標檢測就是“堂堂清”,學生課下只須做好預習作業(yè)就行了,這樣會有更多自由安排的時間,發(fā)展個性。
《完全平方公式》教案5
課題教案:完全平方公式
學科:數學
年級:七年級
1內容本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。
1.1以教材作為出發(fā)點,依據《數學課程標準》,引導學生體會、參與科學探究過程。使學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。
1.2用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學生的數學思維。
2教學目標
2.1知識目標:會推導完全平方公式,并能運用公式進行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。
2.2技能目標:經歷由一般的多項式乘法向乘法公式過渡的探究過程,進一步培養(yǎng)學生歸納總結的能力,并給公式的應用打下堅實的基礎。
2.3情感與態(tài)度目標:通過觀察、實驗、歸納、類比、推斷獲得數學猜想,體驗數學活動充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結論的確定性。
3教學重點完全平方公式的準確應用。
4教學難點掌握公式中字母表達式的意義及靈活運用公式進行計算。
5教育理念和教學方式
5.1教學是師生交往、積極互動、共同發(fā)展的過程。教師是學生學習的組織者、促進者、合作者:本節(jié)的教學過程,要為學生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學生,贊賞每一位學生的結論和對自己的超越,尊重學生的個人感受和獨特見解;幫助學生發(fā)現他們所學東西的'個人意義和社會價值,通過恰當的教學方式引導學生學會自我調適,自我選擇。
學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。
5.2采用“問題情景—探究交流—得出結論—強化訓練”的模式展開教學。充分利用動手實踐的機會,盡可能增加教學過程的趣味性,強調學生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學習促進自主探究。
6具體教學過程設計如下:
6.1提出問題:[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?
(x+3)2=,(x-3)2=,
這些式子的左邊和右邊有什么規(guī)律?再做幾個試一試:
(2m+3n)2=,(2m-3n)2=
6.2分析問題
6.2.1[學生回答]分組交流、討論 多項式的結構特點
。1)原式的特點。兩數和的平方。
。2)結果的項數特點。等于它們平方的和,加上它們乘積的兩倍
(3)三項系數的特點(特別是符號的特點)。
。4)三項與原多項式中兩個單項式的關系。
6.2.2[學生回答]總結完全平方公式的語言描述:
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。
6.2.3、[學生回答]完全平方公式的數學表達式:
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
6.3運用公式,解決問題
6.3.1口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)
(m+n)2=, (m-n)2=,
(-m+n)2=, (-m-n)2=,
6.3.2小試牛刀
、(x+y)2=;②(-y-x)2=;
③(2x+3)2=;④(3a-2)2=;
6.4學生小結:你認為完全平方公式在應用過程中,需要注意那些問題?
(1)公式右邊共有3項。
(2)兩個平方項符號永遠為正。
(3)中間項的符號由等號左邊的兩項符號是否相同決定。
(4)中間項是等號左邊兩項乘積的2倍。
6.5[作業(yè)]P34隨堂練習P36習題
《完全平方公式》教案6
學習目標:
1、經歷探索完全平方公式的過程,發(fā)展學生觀察、交流、歸納、猜測、驗證等能力。
2、會推導完全平方公式,了解公式的幾何背景,會用公式計算。
3、數形結合的數學思想和方法。
學習重點:會推導完全平方公式,并能運用公式進行簡單的計算。
學習難點:掌握完全平方公式的結構特征,理解公式中a.b的廣泛含義。
學習過程:
一、學習準備
1、利用多項式乘以多項式計算:(a+b)2 (a-b)2
2、這兩個特殊形式的多項式乘法結果稱為完全平方公式。
嘗試用自己的語言敘述完全平方公式:
3、完全平方公式的幾何意義:閱讀課本64頁,完成填空。
4、完全平方公式的結構特征:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
左邊是 形式,右邊有三項,其中兩項是 形式,另一項是
注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結構特征,就可以運用這一公式,可用符號表示為:(□±△)=□2±2□△+△2
5、兩個完全平方公式的轉化:
(a-b)2= 2=( )2+2( )+( )2=
二、合作探究
1、利用乘法公式計算:
(1) (3a+2b)2 (2) (-4x2-1)2
分析:要分清題目中哪個式子相當于公式中的.a ,哪個式子相當于公式中的b
2、利用乘法公式計算:
(1) 992 (2) ( )2
分析:要利用完全平方公式,需具備完全平方公式的結構,所以992可以轉化( )2,( )2可以轉化為( )2
3、利用完全平方公式計算:
(1) (a+b+c)2 (2) (a-b)3
三、學習
對照學習目標,通過預習,你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?
四、自我測試
1、下列計算是否正確,若不正確,請訂正;
(1) (-1+3a)2=9a2-6a+1
(2) (3x2- )2=9x4-
(3) (xy+4)2=x2y2+16
(4) (a2b-2)2=a2b2-2a2b+4
2、利用乘法公式計算:
(1) (3x+1)2 (2) (a-3b)2
(3) (-2x+ )2 (4) (-3m-4n)2
3、利用乘法公式計算:
(1) 9992 (2) (100.5)2
4、先化簡,再求值;
( m-3n)2-( m+3n)2+2,其中m=2,n=3
五、思維拓展
1、如果x2-kx+81是一個完全平方公式,則k的值是
2、多項式4x2+1加上一個單項式后,使它能成為一個整式的完全平方,那么加上的單項式可以是
3、已知(x+y)2=9, (x-y)2=5 ,求xy的值
4、x+y=4 ,x-y=10 ,那么xy=
5、已知x- =4,則x2+ =
《完全平方公式》教案7
完全平方公式(教案) 賈村中學 聶盼山
一、教學目標
。1) (1) 知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算,數學教案-完全平方公式(教案)。
。2) (2) 過程與方法目標;學生探究完全平方公式,體會數形結合。
二、教學重點;公式結構及運用。
三、教學難點;公式中字母AB的含義理解與公式正確運用。
四、教具;自制長方形、正方形卡片
五、教學過程;
教師活動
學生活動
1、 1、 創(chuàng)設情景,提出問題,引入課題
。1) (1) 想一想
一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。
(1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?
。2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?
。3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?
。4) (4) 第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)
1、 1、 學生四人一組討論。
填空:
。1)第一天給孩子 塊糖。
。2)第二天給孩子 塊糖。
(3)第三天給孩子 塊糖。
男孩子第三天多得 塊糖
女孩第三天多得 塊糖。
教師活動
學生活動
。2) (2) 做一做、請同學拼圖
a
教師巡視指導學生拼圖
2、 2、 教師提問:
。1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現什么?
3、 3、 想一想
。1)(a +b )用多項式乘法法則說明
。ǎ玻 a -b )
。、請同學們自己敘述上面的等式
5、說一說,a b能表示什么?
。ā酰穑 □+2□○+○
。、算一算
。ǎ保ǎ玻兀常ǎ玻ǎ矗兀担伲
請同學們分清a b
。、練一練
。ǎ保ǎ玻兀常伲 (2)(2XY-3X)
8、試一試(a+b+c)
作業(yè):P135 1、2
學生2人一組拼圖交流
。、學生觀察思考
。ǎ保 (1) 大正方形邊長?
。ǎ玻 (2) 四塊卡片的面積分別是
。ǎ常 (3) 大正方形的總面積是多少?
3、(1)學生運用多項式乘法法則推導
。ǎ幔猓剑幔玻幔猓庹f出每一步運算理由
。ǎ玻⿲W生自己探究交流
4、學生用語言敘述公式
。怠熒餐、b對應項 教師書寫
。、學生獨立完成練一練展示結果
。、學生四人一組討論交流
。、有興趣的同學可以探
完全平方公式(教案) 賈村中學 聶盼山
一、教學目標
。1) (1) 知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。
。2) (2) 過程與方法目標;學生探究完全平方公式,體會數形結合。
二、教學重點;公式結構及運用。
三、教學難點;公式中字母AB的含義理解與公式正確運用。
四、教具;自制長方形、正方形卡片
五、教學過程;
教師活動
學生活動
1、 1、 創(chuàng)設情景,提出問題,引入課題
。1) (1) 想一想
一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。
(1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?
(2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?
(3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?
(4) (4) 第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)
1、 1、 學生四人一組討論,初中數學教案《數學教案-完全平方公式(教案)》。
填空:
。1)第一天給孩子 塊糖。
。2)第二天給孩子 塊糖。
。3)第三天給孩子 塊糖。
男孩子第三天多得 塊糖
女孩第三天多得 塊糖。
教師活動
學生活動
。2) (2) 做一做、請同學拼圖
a
教師巡視指導學生拼圖
2、 2、 教師提問:
(1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現什么?
3、 3、 想一想
。1)(a +b )用多項式乘法法則說明
。ǎ玻 a -b )
。、請同學們自己敘述上面的等式
。、說一說,a b能表示什么?
。ā酰穑 □+2□○+○
6、算一算
。ǎ保ǎ玻兀常ǎ玻ǎ矗兀担伲
請同學們分清a b
7、練一練
。ǎ保ǎ玻兀常伲 (2)(2XY-3X)
。、試一試(a+b+c)
作業(yè):P135 1、2
學生2人一組拼圖交流
。病W生觀察思考
。ǎ保 (1) 大正方形邊長?
。ǎ玻 (2) 四塊卡片的面積分別是
(3) (3) 大正方形的總面積是多少?
。、(1)學生運用多項式乘法法則推導
(a+b)=a+2ab+b說出每一步運算理由
。ǎ玻⿲W生自己探究交流
4、學生用語言敘述公式
5、師生共同a、b對應項 教師書寫
。丁W生獨立完成練一練展示結果
。贰W生四人一組討論交流
。浮⒂信d趣的同學可以探
完全平方公式(教案) 賈村中學 聶盼山
一、教學目標
(1) (1) 知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。
。2) (2) 過程與方法目標;學生探究完全平方公式,體會數形結合。
二、教學重點;公式結構及運用。
三、教學難點;公式中字母AB的含義理解與公式正確運用。
四、教具;自制長方形、正方形卡片
五、教學過程;
教師活動
學生活動
1、 1、 創(chuàng)設情景,提出問題,引入課題
。1) (1) 想一想
一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。
。1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?
(2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?
。3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?
。4) (4) 第三天比前二天的'孩子得到糖總數哪個多?多多少?為什么?(分組討論)
1、 1、 學生四人一組討論。
填空:
。1)第一天給孩子 塊糖。
。2)第二天給孩子 塊糖。
(3)第三天給孩子 塊糖。
男孩子第三天多得 塊糖
女孩第三天多得 塊糖。
教師活動
學生活動
(2) (2) 做一做、請同學拼圖
a
教師巡視指導學生拼圖
2、 2、 教師提問:
。1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現什么?
3、 3、 想一想
。1)(a +b )用多項式乘法法則說明
。ǎ玻 a -b )
4、請同學們自己敘述上面的等式
。、說一說,a b能表示什么?
。ā酰穑 □+2□○+○
。、算一算
。ǎ保ǎ玻兀常ǎ玻ǎ矗兀担伲
請同學們分清a b
。、練一練
(1)(2X-3Y) (2)(2XY-3X)
。、試一試(a+b+c)
作業(yè):P135 1、2
學生2人一組拼圖交流
。病W生觀察思考
。ǎ保 (1) 大正方形邊長?
。ǎ玻 (2) 四塊卡片的面積分別是
。ǎ常 (3) 大正方形的總面積是多少?
。场ⅲǎ保⿲W生運用多項式乘法法則推導
。ǎ幔猓剑幔玻幔猓庹f出每一步運算理由
。ǎ玻⿲W生自己探究交流
4、學生用語言敘述公式
5、師生共同a、b對應項 教師書寫
。丁W生獨立完成練一練展示結果
。贰W生四人一組討論交流
8、有興趣的同學可以探
《完全平方公式》教案8
1.能根據多項式的乘法推導出完全平方公式;(重點)
2.理解并掌握完全平方公式,并能進行計算.(重點、難點)
一、情境導入
計算:
(1)(x+1)2; (2)(x-1)2;
(3)(a+b)2; (4)(a-b)2.
由上述計算,你發(fā)現了什么結論?
二、合作探究
探究點:完全平方公式
【類型一】 直接運用完全平方公式進行計算
利用完全平方公式計算:
(1)(5-a)2;
(2)(-3-4n)2;
(3)(-3a+b)2.
解析:直接運用完全平方公式進行計算即可.
解:(1)(5-a)2=25-10a+a2;
(2)(-3-4n)2=92+24n+16n2;
(3)(-3a+b)2=9a2-6ab+b2.
方法總結:完全平方公式:(a±b)2=a2±2ab+b2.可巧記為“首平方,末平方,首末兩倍中間放”.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第12題
【類型二】 構造完全平方式
如果36x2+(+1)x+252是一個完全平方式,求的值.
解析:先根據兩平方項確定出這兩個數,再根據完全平方公式確定的值.
解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.
方法總結:兩數的平方和加上或減去它們積的2倍,就構成了一個完全平方式.注意積的2倍的符號,避免漏解.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第4題
【類型三】 運用完全平方公式進行簡便計算
利用完全平方公式計算:
(1)992; (2)1022.
解析:(1)把99寫成(100-1)的形式,然后利用完全平方公式展開計算.(2)可把102分成100+2,然后根據完全平方公式計算.
解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;
(2)1022=(100+2)2=1002+2×100×2+4=10404.
方法總結:利用完全平方公式計算一個數的平方時,先把這個數寫成整十或整百的數與另一個數的和或差,然后根據完全平方公式展開計算.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第13題
【類型四】 靈活運用完全平方公式求代數式的值
若(x+)2=9,且(x-)2=1.
(1)求1x2+12的值;
(2)求(x2+1)(2+1)的值.
解析:(1)先去括號,再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案.
解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;
(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.
方法總結:所求的展開式中都含有x或x+時,我們可以把它們看作一個整體代入到需要求值的代數式中,整體求解.
變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第9題
【類型五】 完全平方公式的幾何背景
我們已經接觸了很多代數恒等式,知道可以用一些硬紙片拼成的圖形面積來解釋一些代數恒等式.例如圖甲可以用來解釋(a+b)2-(a-b)2=4ab.那么通過圖乙面積的計算,驗證了一個恒等式,此等式是( )
A.a2-b2=(a+b)(a-b)
B.(a-b)(a+2b)=a2+ab-2b2
C.(a-b)2=a2-2ab+b2
D.(a+b)2=a2+2ab+b2
解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故選C.
方法總結:通過幾何圖形面積之間的數量關系對完全平方公式做出幾何解釋.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第7題
【類型六】 與完全平方公式有關的探究問題
下表為楊輝三角系數表,它的作用是指導讀者按規(guī)律寫出形如(a+b)n(n為正整數)展開式的系數,請你仔細觀察下表中的規(guī)律,填出(a+b)6展開式中所缺的系數.
(a+b)1=a+b,
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3,
則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.
解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項展開式的系數除首尾兩項都是1外,其余各項系數都等于(a+b)n-1的相鄰兩個系數的和,由此可得(a+b)4的各項系數依次為1、4、6、4、1;(a+b)5的各項系數依次為1、5、10、10、5、1;因此(a+b)6的系數分別為1、6、15、20、15、6、1,故填20.
方法總結:對于規(guī)律探究題,讀懂題意并根據所給的'式子尋找規(guī)律,是快速解題的關鍵.
變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第10題
三、板書設計
1.完全平方公式
兩個數的和(或差)的平方,等于這兩個數的平方和加(或減)這兩個數乘積的2倍.
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
2.完全平方公式的運用
本節(jié)課通過多項式乘法推導出完全平方公式,讓學生自己總結出完全平方公式的特征,注意不要出現如下錯誤:(a+b)2=a2+b2,(a-b)2=a2-b2.為幫助學生記憶完全平方公式,可采用如下口訣:首平方,尾平方,乘積兩倍在中央.教學中,教師可通過判斷正誤等習題強化學生對完全平方公式的理解記憶。
《完全平方公式》教案9
一、教材分析:
(一)教材的地位與作用
本節(jié)內容主要研究的是完全平方公式的推導和公式在整式乘法中的應用。它是在學生學習了代數式的概念、整式的加減法、冪的運算和整式的乘法后進行學習的,其地位和作用主要體現在以下幾方面:
。1)整式是初中代數研究范圍內的一塊重要內容,整式的運算又是整式中一大主干,乘法公式則是在學習了單項式乘法、多項式乘法之后來進行學習的;一方面是對多項式乘法中出現的較為特殊的算式的一種歸納、總結;另一方面,乘法公式的推導是初中代數中運用推理方法進行代數式恒等變形的開端,通過乘法公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處。
。2)乘法公式是后續(xù)學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習因式分解、分式運算的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的功能。
。3)公式的發(fā)現與驗證給學生體驗規(guī)律發(fā)現的基本方法和基本過程提供了很好模式。
。ǘ┙虒W目標的確定
在素質背景下的數學教學應以學生的發(fā)展為本,學生的能力培養(yǎng)為重,尤其是創(chuàng)新、創(chuàng)造能力,以及培養(yǎng)學生良好的個性品質等。根據以上指導思想,同時參照義務教育階段《數學課程標準》的要求,確定本節(jié)課的教學目標如下:
1、知識目標:
理解公式的推導過程,了解公式的幾何背景,會應用公式進行簡單的計算。
2、能力目標:
滲透建模、化歸、換元、數形結合等思想方法,培養(yǎng)學生的發(fā)現能力、求簡意識、應用意識、解決問題的能力和創(chuàng)新能力。
3、情感目標:
培養(yǎng)學生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思維品質。
。ㄈ┙虒W重點與難點
完全平方公式和平方差公式一樣是主要的乘法公式,其本質是多項式乘法,是學生今后用于計算的一種重要依據,因此,本節(jié)教學的重點與難點如下:
本節(jié)的重點是體會公式的發(fā)現和推導過程,理解公式的本質,并會運用公式進行簡單的計算。
本節(jié)的難點是從廣泛意義上理解公式中的字母含義,判明要計算的代數式是哪兩數的和(差)的平方。
二、教學方法與手段
。ㄒ唬┙虒W方法:
針對初一學生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索,啟發(fā)引導,合作交流展開教學,引導學生主動地進行觀察、猜測、驗證和交流。同時考慮到學生的認知方式、思維水平和學習能力的差異進行分層次教學,讓不同層次的學生都能主動參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索邊歸納,突出以學生為主體的探索性學習活動和因材施教原則,教師努力為學生的探索性學習創(chuàng)造知識環(huán)境和氛圍,遵循知識產生過程,從特殊→一般→特殊,將所學的知識用于實踐中。
采用小組討論,大組競賽等多種形式激發(fā)學習興趣。
。ǘ┙虒W手段:
利用投影儀輔助教學,突破教學難點,公式的推導變成生動、形象、直觀,提高教學效率。
(三)學法指導:
在學法上,教師應引導學生積極思維,鼓勵學生進行合作學習,讓每個學生都動口、動手、動腦,自己歸納出運算法則,培養(yǎng)學生學習的主動性和積極性。
三、教材處理
根據本節(jié)內容特點,本著循序漸進的原則,我將以“邊長為(a+b)的正方形面積是多少?”這個實際問題引入新課,關于兩數和的平方公式通過實例、推導、驗證幾個步驟完成。關于兩數差的平方公式,我將為學生提供三種不同的思路,由學生自己選擇學習、理解,然后再歸納的方法進行,再通過分層次練習,加以鞏固。
四、教學程序
教 學 過 程
設計意圖
一、創(chuàng)設情境,引出課題
如圖,有一個邊長為a米的正方形廣場,則這個廣場的面積是多少?
a
若在這個廣場的相鄰兩邊鋪一條寬為10米的道路,則面積是多少?
a 10
引導學生利用圖形分割求面積。
另一方面:正方形
10 10a 102 面積為(a+10)2, 所以:
(a+10)2=a2+20a+102
a a2 10a
a 10
b ab b2 把10替換為b,
(a+b)2=a2+2ab+b2
a a2 ab 提出課題
a b
通過較為簡單的幾何圖形面積計算和較熟悉的整式乖法計算。引入本節(jié)學習內容(a+b)·(a+b)
(根據初一學生年齡特點,采用圖形變化來激發(fā)學生學習興趣)
問題是知識、能力的生長點,通過富有實際意義的問題能激活學生原有認知,促使學生主動地進行探索和思考。
對公式(a+b)2=a2+2ab+b2的形式進行初步認識,接觸
二、交流對話,探求新知
1、推導兩數和的完全平方公式
計算(a+b)2
解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
2、理解公式特征
、偎闶剑簝蓴岛偷钠椒
、诜e:兩個數的平方和加上這兩個數積的2倍
3、語言敘述
(a+b)2=a2+2ab+b2用語言如何敘述
4、公式(a-b)2=a2-2ab+b2教學
、倮枚囗検匠朔 (a-b)2=(a-b)(a-b)
②利用換元思想 (a-b)2=[a+(-b)]2
、劾脠D形
b
a
(a-b) b
a
5、學生總結、歸納:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
這兩個公式叫做完全平方公式,兩數和(或差)的平方,等于這兩數的平方和,加上(或減去)這兩數積的2倍。
6、公式中的字母含義的理解。(學生回答)
(x+2y)2是哪兩個數的和的平方?
(x+2y)2=( )2+2( )( )+( )2
(2x-5y)2是哪兩個數的差的平方?
(2x+5y)2=( )2+2( )( )+( )2
變式 (2x-5y)2可以看成是哪兩個數的和的平方?
利用多項式乘法推導公式,使學生了解公式的來源以及理解乘法公式的本質。
組織學生小組討論,使學生明確公式特征,加深對公式表象的理解。
由學生對公式
(a+b)2=a2+2ab+b2進行口頭語言敘述。
(1)說明:教師提供三種模式,由學生選擇一種去解決。培養(yǎng)學生學習的主動性,開闊學生的思路。(2)同時對滲透數形結合思想、換元思想,也是分散、分步突破本節(jié)的難點的第一個層次;(3)體會辯證統(tǒng)一的'唯物主義觀點;(4)正確引導學生學習時知識的正遷移。
使學生學會對公式的正確表述,有利于學生正確用于計算之中,此時也可以讓學生對兩個公式特點進行討論歸納,適當總結一定的口訣:“頭平方,尾平方,兩倍的乘積中間放!
加深學生對公式中的字母含義的理解,明確字母意義的廣泛性
三、整理新知形成結構
1、完全平方公式并分析公式左右的特征。
2、換元的基本想法
四、應用新知,體驗成功
1、例1教學:用完全平方公式計算
(1)(a+3)2 (2)(y-)2 (3)(-2x+t)2 (4)(-3x-4y)2
學生直接運用公式計算,教師板演,講評時邊口述理由,針對第(4)題(-3x-4y)2可以看成是-3x與4y差的平方,也可以看成-3x與-4y和的平方
提出以下問題:
。1)可否看成兩數和的平方,運用兩數和的平方公式來計算?
(2)可否看成兩數差的平方,運用兩數差的平方公式來計算?
。3)能不能進行符號轉化?如(-3x-4y)2=(3x+4y)2
2、公式鞏固
(1)同桌同學互相編一道用完全平方公式計算題目,然后解答。
。2)下列各式的計算,錯在哪里?應怎樣改正?
、(a+b)2=a2+b2 ②(a-b)2=a2-b2
③(a-2b)2=a2+2ab+2b2
3、練習:運用完全平方公式計算:(學生板演)
、(a+5)2 ②(3+x)2 ③(y-2)2 ④(7-y)2
、(2x+3y)2⑥(-2x-3y)2 ⑦(3- )2 ⑧(- - )2
4、例2,運用完全平方公式計算:(1)1012 (2)982
5、練習:運用完全平方公式計算
(1)912 (2)7982 (3)(10 )2
6、討論:(1-2x)(-1-2x), (x-2y)(-2y+1)如何計算
五、公式拓展,鼓勵探究
1、a2+b2=(a+b)2-______ a2+b2+ _______=(a+b)2
a2+b2+ ________ =(a-b)2
2、(a+b)2-(a-b)2=______ 3、(a+b+c)2=________
4、提出思考題:(a+b)3=? (a+b)4=?
5、已知 求 的值。
6、已知: ,求 , 的值。
6. 已知 ,求x和y的值。
(1)遵循及時鞏固原則。(2)針對初一學生注意力不能持久的特點。(3)形成知識網絡,有利于學生進一步學習公式的運用
(1)直接運用公式進行計算。(2)進一步幫助學生掌握換元法。(3)進行符號轉化的變換,加深學生對公式理解的深度,也為進一步學習其它知識打好基礎。
對這幾個式子的辨析目的在于防止學生對以前學過的如(ab)2=a2b2的公式的負遷移作用
講練結合
(1)合作學習,四人小組討論(教師逐步引導到運用完全平方公式計算)學生講自己解題的想法和步驟,培養(yǎng)語言表達能力。(2)體會公式實際運用作用,增加學習興趣
進一步辨析完全平方公式與平方差公式的區(qū)別
公式變形利于各種計算
提出一個問題,引導學生用學習研究完全平方公式的方法去研究公式的拓展變形問題。如:三項式的平方,兩項式的立方、四次方等,培養(yǎng)學生的嚴謹的治學態(tài)度和鉆研精神。
六、小結提高,知識升華
1、兩個公式 (a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
2、兩種推導方法:多項式乘法導出;圖形面積導出
3、換元法與轉化
七、作業(yè)布置,分層落實
1、閱讀教材 6.17內容
2、見省編作業(yè)本 6.17
3、對(a+b)2,(a+b)3 ……的展開式從項數、系數方面進行研究
由學生自己小結本節(jié)所學知識、方法等。教師根據學生回答情況作出補充。
(1)作業(yè)1主要以培養(yǎng)學習良好的學習習慣為目的。(2)結合學生實際情況,貫徹面向全體學生,因材施教原則。作業(yè)2要求全體學都能完成。作業(yè)3為選做題,部分學有余力的學生可選做。在減輕學生的課業(yè)負擔同時,注重人本思想,以學生的能力發(fā)展為重。 也能滿足不同層次學生的不同要求。
附:板書設計與時間大致安排
屏 幕
課題
公式……例題
學生板演
本課時的時間大致安排:
引入課題3分鐘左右,探求新知15分鐘左右,整理新知2分鐘左右,應用新知15分鐘左右,公式拓展5分鐘左右,小結作業(yè)布置約5分鐘。
設 計 說 明
本節(jié)課的教學設計注重體現以教師為主導、學生為主體,以發(fā)展學生為本的思想。遵循初一學生的心理特點(形象思維大于抽象思維)和認知規(guī)律(從特殊到一般)。結合學生實際學習情況(已較熟練掌握多項式乘法,并且本節(jié)之前也已經學習了平方差公式)進行本課設計的。下面就設計作幾點簡單說明:
1、完全平方公式的本質是多項式乘法,它的推導方法與平方差公式推導方法是一樣的,根據乘方的意義與多項式乘法法則,就可以推導出完全平方公式。因此在兩數和的平方公式推導中,采取先由學生自己計算(a+b)2,然后教師點題的方式,再加上引課時已經由幾何圖形面積的計算得出的結論(a+b)2=a2+2ab+b2,學生是容易接受的。在兩數差的平方公式推導中,更進一步,由學生自主選擇一種模式解決、驗證,增加了數學課堂的開放性。
2、充分發(fā)揮學生自主學習、探究的能力。從引入時圖形變換的教師啟發(fā)引導,到公式驗證、推導時的學生自主探索,再到學生與學生之間的合作交流學習,都突出了學生是探索性學習活動的主體。在公式拓展中還提出了思考題(a+b)3=?(a+b)4=?……(a+b+c)2=?培養(yǎng)學生嚴謹的治學態(tài)度和鉆研探索的精神。同時讓學生明確本節(jié)課不僅要學會完全平方公式,更加要學會完全平方公式的推導方法,即授學生以漁,讓學生學會學習。
3、在練習設計與作業(yè)布置中都體現了分層次教學的要求,讓不同層次的學生都能主動的參與并都能得到充分的發(fā)展。同時也遵循了面向全體與因材施教相結合的教學原則。
4、充分挖掘本課時教材中的隱含的各種數學思想,在教學中滲透如建模思想、數形結合思想、換元思想、化歸思想,注重培養(yǎng)學生的發(fā)現問題、解決問題的能力、求簡意識、應用意識、創(chuàng)新能力等各方面能力。
5、公式(a-b)2=a2-2ab+b2可以作為(a+b)2=a2+2ab+b2的一個應用,這樣兩個公式便統(tǒng)一為一個公式,這樣做有助于學生的記憶和理解,但作為應用,實踐表明還是把它們分開來用的好。因此,教學中在公式(a-b)2=a2-2ab+b2的推導過程就有意識的安排與(a+b)2=a2-2ab+b2統(tǒng)一,但又它與(a+b)2=a2+2ab+b2同等的對待。最后在小結時,對于兩者的聯系再加以說明,讓學生領會到數學中的辯證統(tǒng)一思想。
《完全平方公式》教案10
教學目標:完全平方公式的推導及其應用;完全平方公式的幾何解釋;視學生對算理的理解,有意識地培養(yǎng)學生的思維條理性和表達能力.
教學重點與難點:完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.
教學過程:
一、提出問題,學生自學
問題:根據乘方的定義,我們知道:a2=aa,那么(a+b)2應該寫成什么樣的形式呢?(a+b)2的運算結果有什么規(guī)律?計算下列各式,你能發(fā)現什么規(guī)律?
(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
。2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
學生討論,教師歸納,得出結果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推廣:結果中有兩個數的平方和,而2p=2p1,4m=2m2,恰好是兩個數乘積的二倍(1)(2)之間只差一個符號.
推廣:計算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
結論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:兩數和(或差)的平方,等于它們的`平方和,加(或減)它們的積的2倍.
二、幾何分析:
你能根據圖(1)和圖(2)的面積說明完全平方公式嗎?
圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數學上冊《完全平方公式》教案教案《新人教版八年級數學上冊《完全平方公式》教案》,來自網!
《完全平方公式》教案11
教學目標
1、知識與技能:體會公式的發(fā)現和推導過程,了解公式的幾何背景,理解公式的本質,會應用公式進行簡單的計算.
2、過程與方法:通過讓學生經歷探索完全平方公式的過程,培養(yǎng)學生觀察、發(fā)現、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達能力.培養(yǎng)學生的數形結合能力.
3、情感態(tài)度價值觀:體驗數學活動充滿著探索性和創(chuàng)造性,并在數學活動中獲得成功的體驗與喜悅,樹立學習自信心.
教學重難點
教學重點:
1、對公式的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋.
2、會運用公式進行簡單的計算.
教學難點:
1、完全平方公式的推導及其幾何解釋.
2、完全平方公式的結構特點及其應用.
教學工具
課件
教學過程
一、復習舊知、引入新知
問題1:請說出平方差公式,說說它的結構特點.
問題2:平方差公式是如何推導出來的?
問題3:平方差公式可用來解決什么問題,舉例說明.
問題4:想一想、做一做,說出下列各式的結果.
(1)(a+b)2(2)(a-b)2
(此時,教師可讓學生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學生的學習興趣.)
二、創(chuàng)設問題情境、探究新知
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的'新品種.(如圖)
(1)四塊面積分別為:、、、;
(2)兩種形式表示實驗田的總面積:
、僬w看:邊長為的大正方形,S=;
、诓糠挚矗核膲K面積的和,S=.
總結:通過以上探索你發(fā)現了什么?
問題1:通過以上探索學習,同學們應該知道我們提出的問題4正確的結果是什么了吧?
問題2:如果還有同學不認同這個結果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.
(教學過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學生大膽猜想,發(fā)表見解,但要驗證)
問題3:你能說說(a+b)2=a2+2ab+b2
這個等式的結構特點嗎?用自己的語言敘述.
(結構特點:右邊是二項式(兩數和)的平方,右邊有三項,是兩數的平方和加上這兩數乘積的二倍)
問題4:你能根據以上等式的結構特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.
總結:我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.
問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?
語言描述:兩數和(或差)的平方等于這兩數的平方和加上(或減去)這兩數積的2倍.
強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.
三、例題講解,鞏固新知
例1:利用完全平方公式計算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結:運用完全平方公式計算的一般步驟
(1)確定首、尾,分別平方;
(2)確定中間系數與符號,得到結果.
四、練習鞏固
練習1:利用完全平方公式計算
練習2:利用完全平方公式計算
練習3:
(練習可采用多種形式,學生上黑板板演,師生共同評價.也可學生獨立完成后,學生互相批改,力求使學生對公式完全掌握,如有學生出現問題,學生、教師應及時幫助.)
五、變式練習
六、暢談收獲,歸納總結
1、本節(jié)課我們學習了乘法的完全平方公式.
2、我們在運用公式時,要注意以下幾點:
(1)公式中的字母a、b可以是任意代數式;
(2)公式的結果有三項,不要漏項和寫錯符號;
(3)可能出現①②這樣的錯誤.也不要與平方差公式混在一起.
七、作業(yè)設置
《完全平方公式》教案12
教學過程
一、議一議
探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b)。師生共同分析:此題是做除法運算,可以從兩方面思考:根據除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即( )x = x y,由單項式乘以單項式法則可得(x y)x = x y,因此,x yx =x y 。 另外,根據同底數冪的除法法則,由約分也可得 =x y.學生動筆:寫出(2)(3)題的結果。 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數、同底數冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數、同底數冪分別相除后,作為商的'因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。
二、做一做
鞏固新知例1計算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 學生活動:在練習本上計算。教師引導學生按法則進行運算,首先確定它們的系數,把系數的商作為商的系數,其次確定相同的字母,在被除式中出現的字母作為商中可能含有的字母,相同字母的指數之差作為商式中對應字母的指數,只在被除式中含有的字母指數不變,最后化簡。第(1)(2)題對照法則進行,第(3)題要按運算順序進行。第(4)題先把(2a+b)看作一個整體 (一個字母)相除,后用完全平方公式計算。教師板書如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b
三、隨堂練習
P40 1學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。
四、小結
本節(jié)課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:
1、系數相除與同底數冪相除的區(qū)別;
2、符號問題;
3、指數相同的同底數冪相除商為1而不是0;4.在混合運算中,要注意運算的順序。五、作業(yè)課本習題1.15.P41 1、2. 3
《完全平方公式》教案13
學習任務
1、了解完全平方公式的特征,會用完全平方公式進行因式分解.
2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學生逆向思維能力和推理能力.
3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學生觀察能力,實踐能力和創(chuàng)新能力.
學習建議教學重點:
運用完全平方公式分解因式.
教學難點:
掌握完全平方公式的特點.
教學資源
使用電腦、投影儀.
學習過程學習要求
自學準備與知識導學:
1、計算下列各式:
⑴(a+4)2=__________________⑵(a-4)2=__________________
、(2x+1)2=__________________⑷(2x-1)2=__________________
下面請你根據上面的等式填空:
、臿2+8a+16=_____________⑵a2-8a+16=_____________
、4x2+4x+1=_____________⑷4x2-4x+1=_____________
問題:對比以上兩題,你有什么發(fā)現?
2、把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來就得到__________________和__________________,這兩個等式就是因式分解中的完全平方公式.它們有什么特征?
若用△代表a,○代表b,兩式可表示為△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2.
3、a2-4a-4符合公式左邊的特征嗎?為什么?
4、填空:a2+6a+9符合嗎?______相當于a,______相當于b.
a2+6a+9=a2+2()()+()2=()2
a2-6a+9=a2-2()()+()2=()2
可以把形如a2+2ab+b2與a2-2ab+b2的多項式通過完全平方公式進行因式分解.
學習交流與問題研討:
1、例題一(準備好,跟著老師一起做!)
把下列各式分解因式:⑴x2+10x+25⑵4a2-36ab+81b2
2、例題二(有困難,大家一起討論吧!)
把下列各式分解因式:⑴16a4+8a2+1⑵(m+n)2-4(m+n)+4
3、變式訓練:若把16a4+8a2+1變形為16a4-8a2+1會怎么樣呢?
4、運用平方差公式、完全平方公式,把一個多項式分解因式的`方法叫做運用公式法.分析:重點是指出什么相當于公式中的a、b,并適當的改寫為公式的形式.
分析:許多情況下,不一定能直接使用公式,需要經過適當的組合,變形成公式的形式.
強調:分解因式必須分解到每一個因式都不能再分為止.
練習檢測與拓展延伸:
1、鞏固練習
、畔铝心苤苯佑猛耆椒焦椒纸獾氖()
A、x2+2xy-y2B、-x2+2xy+y2C、x2+xy+y2D、x2-xy+y2
、品纸庖蚴剑-a2+2ab-b2=_________,-a2-2ab-b2=_________.
⑶課本P75練一練1、2.
2、提升訓練
、藕啽阌嬎悖20042-4008×20xx+20052
⑵已知a2-2a+b2+4b+5=0,求(a+b)20xx的值.
、侨舭補2+6a+9誤寫為a2+6a+9-1即a2+6a+8如何分解?
3、當堂測試
補充習題P42-431、2、3、4.
分析:許多情況下,不一定能直接使用公式,需要經過適當的組合,變形成公式的形式.
課后反思或經驗總結:
1、本節(jié)課是在學生已經了解因式分解的意義,掌握了提公因式法、平方差公式的基礎上進行教學的,是運用類比的方法,引導學生借助上一節(jié)課學習平方差公式分解因式的經驗,探索因式分解的完全平方公式法,即先觀察公式的特點,再直接根據公式因式分解.
《完全平方公式》教案14
學習目標:
1、能說出有序數對的定義。
2、能用有序數對表示實際生活中物體的位置。
學習重點:用有序數對表示位置。
學習難點:用有序數對表示位置。
學習過程:
自學過程: (一)、自學知識清單
1、教材64頁,在圖7.1—1中找出參加數學問題討論的同學。
小組內交流一下,看一看你們找的位置相同嗎?
思考:(2,4)和(4,2)在同一位置嗎?為什么?
2、請回答教材65頁:思考題。
3、我們把這種有順序的.______個數a與b組成的_______叫做_______,記作( , )。
。ǘ⒆詫W反饋
練習1、利用________________,可以準確地表示出一個位置,
如電影院的座號,“3排2號”、表示為(3,2),則“2排3號”可以表示為 。
練習2、如圖(1)所示,一方隊正沿箭頭所指的方向前進,A的位置為三列四行,表示為A(3,4),則B,C,D表示為B( , ),C( , )
D( , )
練習3、完成課本第65頁的練習。
練習4、用有序數對表示物體位置時,(3,2)與(2,3)表示的位置相同嗎?請結合下面圖形加以說明.
練習5、如圖所示,A的位置為(2,6),小明從A出發(fā),經
(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小剛也從A出發(fā),經
(3,6)→(4,6)→(4,7)→(5,7)→(6,7),則此時兩人相距幾個格?
《完全平方公式》教案15
授課教師:
授課時間:
課型:新授
課題:3.4探究實際問題與一元一次方程組
教學目標基礎知識:掌握一元一次方程得解法,了解銷售中的數量關系。
基本技能:能夠分析實際問題中的數量關系,找相等關系,列出一元一次方程。
基本思想
方法:通過將實際問題轉化成數學問題,培養(yǎng)學生的'建模思想;
基本活動經驗體會解決實際問題的一般步驟及盈虧中的關系
重點探索并掌握列一元一次方程解決實際問題的方法,教學
難點找出已知量與未知量之間的關系及相等關系。
教具資料準備教師準備:課件
學生準備:書、本
教學過程自備
補充集備
補充
一、創(chuàng)設情景引入新課
觀察圖片引課(見大屏幕)
二、探究
探究銷售中的盈虧問題:
1、商品原價200元,九折出售,賣價是元。
2、商品進價是30元,售價是50元,則利潤
是元。
2、某商品原來每件零售價是a元,現在每件降價10%,降價后每件零售價是元。
3、某種品牌的彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應為元。
4、某商品按定價的八折出售,售價是14.8元,則原定售價是。
。▽W生總結公式)
熟悉各個量之間的聯系有助于熟悉利潤、利潤率售價進價之間聯系
【《完全平方公式》教案】相關文章:
《完全平方公式》教案02-15
數學《完全平方公式》教案11-25
數學《完全平方公式》教案[通用]12-20
【精品】《完全平方公式》教案15篇01-09
平方差公式教學反思03-23
《平方根》教案11-03
平方根教學反思06-12
《乘法公式》教學反思04-02
乘法公式教學反思04-01