《乘法分配律》教學反思
身為一位到崗不久的教師,教學是重要的任務之一,借助教學反思我們可以拓展自己的教學方式,如何把教學反思做到重點突出呢?以下是小編為大家收集的《乘法分配律》教學反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
《乘法分配律》教學反思1
一、讓學生從實質(zhì)上理解乘法分配律
在乘法分配律的教學中,如果只求形式把握不求實質(zhì)理解,一方面從認識的角度看是不嚴謹?shù)模ㄐ问缴系牟煌耆珰w納不一定得出真理),另一方面很容易造成學生不求甚解、囫圇吞棗的不良認知習慣。如果滿足于從形式上掌握乘法分配律,對于學生的后續(xù)發(fā)展也極為不利。因此,在教學時先出示了這樣一道例題:一件茄克衫65元,一條褲子35元。王老師買5件茄克衫和5條褲子,一共要花多少元?學生用了兩種解答方法即:(65+35)×5=65×5+35×5。借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。
二、突破乘法分配律的教學難點
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破教學難點,我設計了一系列的.練習。
1、在□里填數(shù),○里填運算符號:如(25+45)×4=□○□○□○□……
2、在相等的一組算式后面打“√”:如16×7+24×7(16+24)×7□……
在這一組題目中教者重點評析了最后一道題:40×50+50×9040×(50+90)□。先讓學生說說著一題為什么不能打√,再根據(jù)乘法分配律的特征,分別寫出與左右算式相等的式子。通過練習學生對乘法分配律有了進一步的認識,又讓學生照上面的樣子寫出的幾個這樣的等式,最后歸納出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。
實際上課堂時學生對于能否找到反例的活動很感興趣,可以嘗試讓學生也提幾個反例,經(jīng)過討論逐個否決,在這樣的過程中,學生的等式變形能力能夠得到很大提高,有益于加深對乘法分配律的認識。
《乘法分配律》教學反思2
關于乘法分配律早在上學期和本冊教材的前幾個單元的練習題中就有所滲透,雖然在當時沒有揭示,但學生已經(jīng)從乘法的意義角度初步進行了感知,以及初步體會了它可以使計算簡便。今天的教學就建立在這樣的基礎之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現(xiàn)在進行對比,談一談自己的感受:
首先,值得向一根木頭老師學習的是,學生的預習工作很到位。課前,學生就已經(jīng)解決了“想想做做”第3、4題,學生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認識提升了,從解決實際問題的角度進一步感受了乘法分配律。而第4題通過計算比較,突現(xiàn)了乘法分配律可以使計算簡便,體現(xiàn)了應用價值。我在課前沒有安排這樣的預習,因此課上的.時間比較倉促。
其次,我在學生解決完例題的問題后,還讓學生提了減法的問題,這樣做的目的是讓學生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴展了學生的知識面,同時又為明天學習簡便運算鋪墊。
最后,我覺得在指導學生在觀察比較65×5+45×5和(65+45)×5的聯(lián)系和區(qū)別時,可以指導學生從數(shù)和運算符號兩個角度觀察,學生得出結論后,其實已經(jīng)感知到了算式的特點,然后讓學生用自己的方式創(chuàng)造相同類型的等式,可以是數(shù)、字母、圖形的等,值得欣慰的是學生能用各種方式正確表示出來,然后再揭示數(shù)學語言,學生的認知產(chǎn)生飛躍。
不足的是,學生很難用自己的語言表達乘法分配律的含義,小組交流時,有些同寫還是充當旁觀者的角色,有待于教師科學地引導。
《乘法分配律》教學反思3
乘法分配律是一節(jié)比較抽象的概念課,教師可以根據(jù)教學內(nèi)容的特點,為學生提供多種探究方法,激發(fā)學生的自主意識。
具體是這樣設計的:先創(chuàng)設佳樂超市的情景調(diào)動學生的學習積極性,通過買“3套運動服,每件上衣21元,每條褲子10元,一共花多少元?”列出兩種不同的式子,他們確實能夠體會到兩個不同的算式具有相等的關系。這是第一步:通過資料獲取繼續(xù)研究的信息。(雖然所得的信息很簡單,只是幾組具有相等關系的算式,但這是學生通過活動自己獲取的,學生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調(diào)動學生的參與意識。)
第二步:觀察算式,尋找規(guī)律。讓學生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,教師不要急于告訴學生答案,而是讓學生自己通過舉例加以驗證。這里既培養(yǎng)了學生的猜測能力,又培養(yǎng)了學生驗證猜測的能力。
第三步:應用規(guī)律,解決實際問題。通過對于實際問題的解決,進一步拓寬乘法分配律。這一階段,既是學生鞏固和擴大知識,又是吸收內(nèi)化知識的階段,同時還是開發(fā)學生創(chuàng)新思維的重要階段。
《乘法分配律》教學反思3
乘法分配律是第三章的教學難點也是重點。這節(jié)課的設計。我是從學生的生活問題入手,利用與生活密切相關的情境圖植樹問題展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識。通過讓學生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成的過程。回顧整個教學過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:
在教學中,通過這次植樹情境讓學生感到數(shù)學就是從身邊的'生活中來的,激發(fā)學生學習的熱情。“一共有多少名學生參加這次植樹活動?”。讓學生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
重點是理解算式的意義,我們在引導中進行總結(4+2)個25的和也可以寫為25分別乘以4和2,再把他們的積相加的形式,接著讓同學們再次深化理解自己嘗試寫出幾個類似的算式,由于是網(wǎng)上教學,沒辦法直接展示學生的算式,于是我在大屏幕上寫出幾個算式,讓同學們來說一說他們的觀察到的算式,從而總結出乘法分配律的規(guī)律。進而通過計算,發(fā)現(xiàn)運用乘法分配律可以使得計算更加簡便。
這節(jié)課的不足:
當我們運用乘法分配律進行練習的時候,我發(fā)現(xiàn)學生在做題時會錯誤的把中間的+抄寫成×,導致錯誤。這說明學生沒有完全對乘法結合律和乘法分配律進行區(qū)分,還需要再次進行強調(diào)。
這節(jié)課上對學生的主題地位有所忽視。雖然是網(wǎng)課教學,沒辦法與學生共同在一間教室,沒辦法與學生面對面教學,但是顧慮到時間的限制與學生的互動,留給學生的思考的時間不夠充分,接下來在教學設計時可以減少授課容量,留給學生充分的思考時間。
《乘法分配律》教學反思4
由于本學期的時間比較短,所以自己在講四年級數(shù)學課的時候,不免有些匆匆。為了保持好進度,習題處理稍顯落后。在近一段時間對孩子們的“運用乘法分配律進行簡算”的檢查來看,效果不是很好。我發(fā)現(xiàn)這是好多學生不容易掌握的,很容易和乘法的結合律弄混淆。所以,我就想搞清楚,到底孩子們是哪里沒有搞清楚?就在課下又提問了幾個老在分配率出錯的孩子運算公式,發(fā)現(xiàn)有的孩子能結結巴巴地把公式背出來,有的是比較順利地進行背誦。那么,會順利背誦公式的孩子們到底是哪里不會呢?
帶著這個問題,我是旁敲側擊地進行“盤問”——我拿著生活中的2.5元的冰淇淋打比方,問問買23個和28個需要多少錢?孩子們算的很快。他們知道把23分解成20加上3,還有部分學生28×25=(20+8)×25,我當時一項,哎呦不錯,還不是完全不會啊。看來,孩子們在真正的生活情境中還是有一大部分人會自覺的用乘法分配律的?墒,真正運用到教學中,孩子們確實很難達到自覺地運用分配律去計算,特別是一些變式就更加的`困難了。
在批改作業(yè)的時候,有三四個孩子的下面的結果卻是讓我大跌眼鏡——28×25=(20+8)×25=20×8×25,當時我就在想,壞了,孩子們把這兩個公示記混淆了。果不其然,我給他們出了一道題72×25=(8×9)×25=8×25+9×25,我在給學生們一一講解的時候,我就在反思,這一類問題出現(xiàn)是因為孩子們沒有自覺觀察算式特點的習慣。他們只是急匆匆的完成自己的作業(yè),對于此類的計算的目的單純得很就是只要得到答案,自己就忽略了計算的過程。
后來我就想,我去時應該多出一點類似于(80+8)×25,72×25,125×32×25的這些題對孩子們進行相應的練習,這樣來提高孩子們對公式概念的認識。我可以讓孩子們先學會一道題的做法,在慢慢來進行相應的引導。并且出一些題目要求孩子們使用分配律或者結合律等等,對孩子們進行鞏固。讓孩子們學會多種方法解決一到數(shù)學題,把握“湊整”這個解題關鍵,正確、合理地使用運算定律,就是正確的。做到真正的學以致用!
《乘法分配律》教學反思5
師:出示教學掛圖并提問:從圖上你知道什么?
生:張阿姨買5件夾克衫和5條褲子,一共要付多少錢?
師:能自己列式解答嗎?(教師巡視,學生解答)
讓用兩種不同方法解答的學生分別板演。
師:說說65×5+45×5這種解答方法是怎樣想到的?
生:先算買夾克衫和買褲子各用多少元?
師:(65+45)×5這種方法呢?
生:先算買一套衣服用多少元?
師:比較這兩種方法,有什么不同和相同呢?
生:想的方法不同導致列的算式不同,但結果相同
師:結果相等的兩個算式可以用什么連接?
生:等號揭示:(65+45)×5=65×5+45×5
師:仔細觀察等號兩邊的算式,它們有什么聯(lián)系嗎?(從數(shù),運算符號思考)
生:結果相等,都有三個數(shù),5左邊出現(xiàn)了1次,右邊出現(xiàn)了兩次,左邊先加再乘,右邊先乘再加……
師:等號左邊先算什么?右邊呢?
生:等號左邊是65加45的和乘5,右邊是65乘5的積加45乘5的積。
師:你能模仿著寫出幾組這樣的算式嗎?學生試寫
學生列舉驗證,教師將學生列舉的等式寫在黑板上,并讓學生說出等式兩邊的得數(shù)。
師:還有很多同學想說,像這樣的例子舉得完嗎?
師:由此你想到些什么?
生:這里有規(guī)律。
師:我們可以用什么來表示這種普遍存在的規(guī)律呢?
生:(字母、符號、文字)
師:試著寫一寫吧
生:(a+b)×c=a×c+b×c
(△+○)×□=△×□+○×□
師:小結:像這樣兩個數(shù)的和與一個數(shù)相乘,也可以用這兩個數(shù)分別與這個數(shù)相乘,再把他們的積相加,這就是乘法分配律。(指著算式說)
順著讀,(任何事物都要從正反兩面去看)反過來讀乘法分配律
反思:
乘法分配律一課是蘇教國標版教材四年級下冊的內(nèi)容,是在學生經(jīng)過較長時間的四則運算學習,對四則運算已有較多感性認識的基礎上學習的。學生接觸過加法、乘法的驗算和口算等方面的知識,對此有較多的感性認識,這是學習乘法分配律的基礎。教材安排這個運算律是從學生解決熟悉的實際問題引入的,讓學生通過觀察、比較和分析,初步感受運算的'規(guī)律。然后讓學生根據(jù)對運算律的初步感知,舉出更多的例子,進一步觀察比較,發(fā)現(xiàn)規(guī)律。教材有意識地讓學生運用已有經(jīng)驗,經(jīng)歷運算律的發(fā)現(xiàn)過程,讓學生在合作與交流中對運算律地認識由感性逐步發(fā)展到理性,合理地構建知識。
課程標準提出“讓學生經(jīng)歷有效地探索過程”。教學中以學生為主體,激勵學生動眼、動手、動口、動腦積極探究問題,促使學生積極主動地參與“觀察——舉例——得出結論”這一數(shù)學學習全過程。學生掌握了學習方法,就等于拿到了打開知識寶庫地金鑰匙。由于乘法分配律是本課教學難點。教學中安排了三個層次,首先學生在觀察等式,初步感知等式特征的基礎上模仿寫等式,在模仿中逐步明晰特征。第二層次在觀察比較中概括特征,通過“由此你想到了些什么”引發(fā)學生聯(lián)想到是否具有普遍性。從而得到猜想:是不是所有的三個數(shù)都具有這樣的特征,再通過學生大量的舉例,驗證猜想,得出規(guī)律。本課從學生的學習情況來看,通過本課的學習不但掌握了乘法分配律的知識,更重要的是學會了數(shù)學方法,并產(chǎn)生運用這一數(shù)學方法進行探索的愿望和熱情。這些數(shù)學方法是學生終身學習必備的能力。
《乘法分配律》教學反思6
乘法分配律是學生較難理解和敘述的定律,比起乘法交換率和乘法結合率男掌握的多。因此在本節(jié)課教學設計上,我結合新課標的一些基本理念和學生的具體情況,注重從實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在不斷的感悟和體驗中學習新知識。
《數(shù)學課程標準》指出:“學生的數(shù)學學習內(nèi)容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的!睌(shù)學教育家波利亞曾經(jīng)說過:“數(shù)學教師的首要責任是盡其一切可能,來發(fā)展學生解決問題的能力!倍覀冞^去的教學往往比較重視解決書上的數(shù)學問題,學生一旦遇到實際問題就束手無策。因此,上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設了一個肯德基餐廳用餐的情境,使學生置身于非常熟悉的生活情境中,極大地激發(fā)了學生的學習欲望。學生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學生的猜想能力,又培養(yǎng)了學生驗證猜想的能力。學生通過自主探索去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,主體性得到了充分的發(fā)揮。
同時,我還注重學生的合作與交流,多向互動。倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數(shù)學學習中,每個學生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的`學生在數(shù)學學習中得到不同的發(fā)展,我在本課教學中立足通過生生、師生之間多向互動,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構。學生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學生的問題意識,又拓寬了學生思維能力,學生也學得積極主動。
應用規(guī)律,解決實際問題是數(shù)學學習的目的所在。在練習題型的設計上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學生逐步加深認識,在弄清算理的基礎上,學生能根據(jù)題目的特點,靈活地運用所學知識進行簡便運算和拓展練習。不僅要求學生會順向應用乘法分配律,而且還要求學生會反向應用。通過正反應用的練習,加深學生對乘法分配律的理解。從課堂反饋來看,學生熱情較高,能夠學以致用,知識掌握的牢固。學生通過自己的努力以及和同學的交流合作,解題速度和準確性都很理想。
本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學生參與的積極性沒有預想中那么高?赡芘c我相對缺乏激勵性語言有關。也有可能今天的題材學生不太感興趣。以后注意,學生不感興趣的材料,教師應該想辦法使呈現(xiàn)的這個材料變得能讓學生感興趣。另外,在回答問題時,個別學生的語言不夠流利、準確。對乘法分配律的敘述稍顯羅嗦,不夠堅定、自信。在這方面有待今后加強訓練和提高。
《乘法分配律》教學反思7
1、情境的創(chuàng)設激發(fā)了學生的計算熱情。
讓學生在生動具體的情境中學習數(shù)學,這是新課標倡導的新理念。我聯(lián)系學生的生活實際,創(chuàng)設了學生熟悉的購買家具的場景,配上我生動的語言敘述,一下子就把學生代入到了一個有數(shù)學味的問題情境中,吸引了所有學生的注意。緊接著的問題如果你是小紅,你想買什么家具呢?根據(jù)小紅家的需要,你們能提出哪些數(shù)學問題?更是激發(fā)了學生的思維,學生個個積極動腦,躍躍欲試。在學生充分提出各種問題的基礎上,我選擇了有代表性的一個問題讓學生獨立解決,極大地激發(fā)了學生的計算熱情。這一環(huán)節(jié)的教學,讓學生經(jīng)歷了因用而算、以算激用的過程,將算與用緊密結合。
2、多層的設計有利于學生數(shù)學模型的建立。
首先讓學生通過獨立計算,交流計算方法,敘述計算過程等一系列的.筆算乘法的技能訓練,形成一定的算理。然后通過比較124和2132這兩題,它們最大的區(qū)別是什么?在乘的時候,有什么不同呢?如果是四位數(shù)、五位數(shù)乘一位數(shù),你認為該怎么乘呢?這兩個問題的討論、交流,引導學生進行整理反思,讓學生能通過兩位數(shù)乘一位數(shù)遷移到三位數(shù)乘一位數(shù),進而自然聯(lián)想到四位數(shù)、五位數(shù)乘一位數(shù)的計算方法其實都是一樣的,從而幫助學生將零散的知識串起來,有利于學生數(shù)學模型的建立。
需要改進的地方是:在學生探索出筆算方法后,我因為擔心學生沒有聽懂,怕學生做錯,說錯,故而引導太細,學生的學習主動性調(diào)動的不夠。如果我能充分相信學生,大膽放手,讓學生獨立地去想,去做,去說,相信學生的。表現(xiàn)會更出色。
《乘法分配律》教學反思8
《探索與發(fā)現(xiàn)(三)乘法分配律》教學反思
東新四小學 王唯
教學內(nèi)容:
小學四年級數(shù)學(上)《探索與發(fā)現(xiàn)(三)》乘法分配律》教材第48頁
教學目標:
1、經(jīng)歷探索的過程,發(fā)現(xiàn)乘法分配律,并能用字母表示。
2、會用乘法分配律進行一些簡便計算。
教學重點:理解乘法分配律的特點。
教學難點:乘法分配律的正確應用。
教學過程:
一、復習回顧
。ǔ鍪菊n件1)計算
35×2×5=35×(2×)
(60×25)×4=65×(×4)
。125×5)×8=(125×)×5
(3×4)×5 × 6=(×)×(×)
師:上節(jié)課,經(jīng)過同學們的探索,我們發(fā)現(xiàn)了乘法交換律和結合律,并會應用這些定律進行簡便計算,今天咱們繼續(xù)探索,看看我們又會發(fā)現(xiàn)什么規(guī)律。讓我們一起走上探索之路。
二、探究發(fā)現(xiàn)
。ǔ霈F(xiàn)課件2)
師:大家看,工人叔叔正在貼瓷磚呢,看到這幅圖,你發(fā)現(xiàn)了哪些數(shù)學信息?
生:我發(fā)現(xiàn)有兩個叔叔在貼瓷磚
生:我發(fā)現(xiàn)一個叔叔貼了4列,每列貼9塊,另一個叔叔貼了6列,每列貼了9塊。
師:你最想知道什么問題?
生:我想知道工人叔叔一共貼了多少塊瓷磚?(按鼠標出示問題) 師:你能估計出工人叔叔一共貼了多少塊瓷磚嗎?
生:我估計大約有100塊瓷磚
生:我估計大約有90塊瓷磚。
師:請同學們用自己喜歡的方法來計算瓷磚究竟有多少塊。(學生做,小組討論,教師巡視)
師:誰來向大家介紹一下自己的做法?
生:6×9+4×9(板書)
=54+36
=90
分別算出正面和側面貼的塊數(shù),再相加,就是貼的總塊數(shù)。
生:(6+4)×9(板書)
= 10×9
=90(塊)
因為每列都是9塊,所以我先算出一共有多少列,再用列數(shù)去乘每列的塊數(shù),就是一共貼瓷磚的塊數(shù)。
師:同學們的計算方法都很好,請同學們仔細觀察兩種算法,你能發(fā)現(xiàn)什么?
生:我發(fā)現(xiàn)計算方法不同,但結果卻是一樣的。
6×9+4×9 = (6+4)×9(板書)
師:請同學們仔細觀察上面兩道算式的特點,你能再舉一些這樣類似的.例子嗎?
。▽W生舉例,教師板書)
師:這幾們同學舉的例子符合要求嗎?請在小組中驗證一下。 (小組匯報)
小組1:符合要求,因為每組中兩個算式都是相等的。
小組2:在每組的兩個算式中,一個是兩個數(shù)的和去乘一個數(shù),另一個是用這兩個數(shù)分別是去乘同一個數(shù),再相加,符合要求。
。ò鍟茫竭B接算式)
師:比較等號左右兩邊的算式,從它們的特點和結果相等中你能發(fā)現(xiàn)什么規(guī)律,小組再討論一下。
小組1:我們小組發(fā)現(xiàn),只要符合上面題目要求的算式,結果都是一樣的。
小組2:我們小組發(fā)現(xiàn),兩個不同的數(shù)分別去和同一個數(shù)相乘,然后再相加,可以先把這兩個數(shù)相加再一起去乘第三個數(shù),結果不變。 結論(課件2):師:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。這叫做 乘 法 分 配 律。它是我們學習的關于乘法的第三個定律。
師:大家齊讀一遍。
師:和同桌說一說自己對乘法分配律的理解。
師:上節(jié)課我們學習了用字母來表示乘法交換律和結合律,現(xiàn)在你能用字母的形式表示出乘法分配律嗎?用a,b,c分別表示這三個數(shù),試著寫一寫吧。
(a+b)×c=a×c+b×c
師:這叫做乘法分配律
三、鞏固練習:
1、計算
。80+4)×25 34×72+34×28
師:觀察算式特點,看是否符合要求,能否應用乘法分配律使計算簡便。
2、判斷正誤
( 25 + 7 )×4 = 25 ×4 ×7×4 ( )
35×9 + 35
= 35×( 9 + 1 )
= 350 - - - - ( )
3、填一填
。12+40)×3=× 3 +×3
15×(40 + 8) = 15×+ 15×
78×20+22×20=(+ )×20
四、總結
師:說說這節(jié)課你有什么收獲?
師:今天同學們通過自己的探索,發(fā)現(xiàn)了乘法分配律,你們真的很棒。乘法分配律是一條很重要的運算定律。應用乘法分配律既能使一些計算簡便,也能幫助我們解決生活中的一些數(shù)學問題,在我們的生活和學習中應用非常廣泛。同學們要在理解的基礎上牢牢記住它,希望它永遠成為你的好朋友,伴你生活、成長。
[板書設計]
探索與發(fā)現(xiàn)(三)
-----乘法分配律
。╝+b)×c=a×c+b×c
6×9+4×9 =(6+4)×9
。40+4)×25 = 40×25+4×25
。64+36)×42 = 42×64+42×36
《乘法分配律》教學反思9
乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸?shù)脕淼挠浀酶。因此我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設計:
一、讓學生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)椋?+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會
借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的`,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學難點
讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
學生主動去設計、解決,調(diào)動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學生已有的知識經(jīng)驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。
乘法分配律教學反思是必要的,所以老師們一定也要好好地去對待。不斷的反思,才可以促進不斷的進步。以上面的文章,希望與各位同行們共同進步。
《乘法分配律》教學反思10
乘法分配律是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律。如何教學能使學生較好的理解乘法分配律的內(nèi)涵,并能正確的運用定律進行簡便運算呢?我做了一下幾點嘗試。
一、創(chuàng)設師生競賽,激發(fā)學習欲望。
上課教師先出示:(1)8×(125+11) (2)(100+1)×23
。3 )648×5+352×5
老師和同學們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。
結果教師又快又對,學生都很奇怪,教師順勢導入:同學們都特別想知道在比賽過程中,學生用計算器都沒有老師口算得快的原因嗎?是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。
這樣的導入讓學生充滿了求知的欲望,激發(fā)了學習的熱情。
二、設計思考問題,學生自主探究。
出示例題后,學生獨立解答,然后教師出示思考問題,學生自主探究。
討論:
1、這兩種方法有什么不同?兩個算式的結果如何?用什么符號連接?
2、那么等號連接的這兩個算式有什么特點和聯(lián)系呢?請同學們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發(fā)現(xiàn)左邊括號外的那個數(shù),寫到右邊都要乘兩次。
生B:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。
整個教學過程通過學生觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內(nèi)容。
三、練習有坡度,前后有呼應。
在本課的練習設計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習的形式多樣,課本上的填空題解決以后,設計了判斷題和練習題,把學生易出錯的問題提前預設好,而且通過練習讓學生明白乘法分配律也可以兩個數(shù)的差,也可以是三個數(shù)的.和,使學生對乘法分配律的內(nèi)容得到進一步完整,也為后面利用乘法分配律進行簡算打下伏筆。為了讓學生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學生運用今天所學知識進行計算,學生非常有興趣,在練習中培養(yǎng)了學生分析、推理、概括的思維能力。
總之,在本堂課中新的教學理念有所體現(xiàn),是一節(jié)本色的數(shù)學課堂。但在具體的操作中還缺乏成熟的思考,自主探究環(huán)節(jié)對問題的設計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設計順序有些出入,感覺效果沒有預想的好,上課時對于教案的熟悉程度還有待加強。
《乘法分配律》教學反思11
教學乘法分配律之后,發(fā)現(xiàn)學生的正確率偏低,特別是在簡算時該選用乘法結合律還是乘法分配律搞不清楚。針對這種情況,在教學中應該注意些什么呢?
一、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內(nèi)涵。
教學中通過解決“濟青高速公路全長多少千米”這一問題,結合具體的生活情景,得到了(110+90)x2=110x2+90x2”這一結果,教學中只注重了等式的外形特點,即兩個數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法意義的角度理解,即左邊表示200個2,右邊也表示200個2。所以(110+90)x2=110x2+90x2
二、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的'和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算是個有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
三、讓學生進行一題多解的練習,經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結合律與乘法分配律的理解。
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8)等。101×89①豎式計算;②(100+1)×89;③101×(80+9)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行簡算,乘法結合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當?shù)乃惴ǖ哪康摹?/p>
四、多練。
針對典型題目多次進行練習。練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如68×25+68+68×74,32×125×25等
《乘法分配律》教學反思12
乘法分配律是第三章的教學難點也是重點。這節(jié)課的設計。我是從學生的生活問題入手,利用與生活密切相關的情境圖植樹問題展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識。通過讓學生經(jīng)歷了 “ 觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納 ” 這樣一個知識形成的過程;仡櫿麄教學過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:
一、引入生活問題,激趣探究
在教學中,我為學生做好新知鋪墊,然后創(chuàng)設大量生動、具體、鮮活的生活情境,讓學生感到數(shù)學就是從身邊的生活中來的,激發(fā)學生學習的熱情。首先我創(chuàng)設情景,提出問題: “ 一共有多少名學生參加這次植樹活動? ” 。讓學生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)( 4 + 2 ) ×25=4×25 + 2×25 這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知 “ 乘法分配律 ” 。再讓學生 “ 觀察這個等式左右兩邊的不同之處 ” ,再次感知 “ 乘法分配律 ” 。同時利用情景,讓學生充分的感知 “ 乘法分配律 ” ,為后來 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供學生獨立探究的機會
我要求學生觀察得到的兩個等式,提出 “ 你有什么發(fā)現(xiàn)? ” 。此時學生對 “ 乘法分配律 ” 已有了自己的一點點感知,我馬上要求學生模仿等式,自己再寫幾個類似的等式。使學生自己的模仿中,自然而然地完成猜測與驗證,形成比較 “ 模糊 ” 的認識。
三、為學生的'學習方式的轉變創(chuàng)設了條件
為了讓 “ 改變學生的學習方式,讓學生進行探索性的學習 ” 不是一句空話。在這節(jié)課上,我抓住學生的已有感知,立刻提出 “ 觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎? ” 。這樣,給學生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學習的主動權力還給學生。學生的學習熱情高了,自然激起了探究的火花。學生的學習方式不再是單一的、枯燥的,整個教學過程都采用了讓學生觀察思考、自主探究、合作交流的學習方式。我想:只有改變學習方式,才能提高學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
《乘法分配律》教學反思13
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律是四年級學習的重點,也是難點之一。也是一節(jié)比較抽象的概念課,教學時我根據(jù)教學內(nèi)容的特點,為學生提供了多種探究方法,激發(fā)了學生的自主意識。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學生答案,而是讓學生自己通過舉例加以驗證。學生興趣濃厚,這里既培養(yǎng)了學生的猜測能力,又培養(yǎng)了學生驗證猜測的能力。從而讓學生知道乘法分配律給大家計算帶來的便利。從而感受數(shù)學的美。
這堂課由具體到抽象,大多需要學生體驗得來,上下來感覺很好,學生很投入,似乎都掌握了,可在練習時還是發(fā)現(xiàn)了一些問題。如:學生在學習時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對這一現(xiàn)象我認為在練習課時要加以改進。注重從學生的實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在不斷的感悟和體驗中學習知識。
乘法分配律在乘法的運算定律中是一個比較難理解的定律,因此在上課前我作了充分的準備。因為學生在三年級時已經(jīng)學過求長方形周長的兩種通過一節(jié)課的學習,學生對乘法分配律的大致規(guī)律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學生就感到很為難了。感覺他們只能意會不能言傳般。課本中關于乘法分配律只有一個植樹的例題,但是練習中有關乘法分配律的運用卻靈活而多變,學生們應用起來有些不知所措,針對這種現(xiàn)狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學生能針對不同的題目能靈活應用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學生印象很深刻,開始還有部分學生只選擇一個數(shù)與8相乘,歸納方法后學生都能正確應用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關鍵:找準兩個乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個數(shù)字該相加還是該相減,看符號就能確定了。
三:拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關鍵在于觀察那個數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個數(shù)或者整百數(shù)減去一個數(shù),再應用懲罰的分配率進行簡算。有了歸類,學生再見到題目就能依據(jù)數(shù)字或運算符號的特征熟練進行乘法分配律的簡算了。
以這個為切入點,從而比較順利地引入新課,正好那天是植樹節(jié)所以我又創(chuàng)讓“打比方”成為數(shù)學課堂的閃光點。
凡是教過小學數(shù)學乘法運算律的教師都會體會到“乘法分配律”是乘法運算律中最難掌握的。學生在做練習題中錯誤最多。所以課前我對教材進行了身隊深度的剖析和思考。最后想出了用打比方突破課堂難點。雖然我們的“比方”有時看來似乎有點不恰當,但是這種比方對開發(fā)學生的想象力,推理能力以及拓展思路竟達到了意想不到的效果。我是這樣做的:
我由解決問題引出乘法分配律的等式,但我沒有急于給學生灌注這叫乘法分配率,而是寫下了這樣一個式子;{姐姐+我}×媽媽=姐姐×媽媽+我×媽媽然后提問:“誰能解釋為什么我這樣寫嗎?思維活躍的學生馬上就會回答:“因為媽媽是你和姐姐共有的,所以你和姐姐都有資格和媽媽在一起。”......學生們的學習興趣一下被調(diào)動起來了,他們明白了數(shù)學原來也是通俗易懂的。然后我再讓他們閱讀教材,給這個看似“不恰當”的比方定性為“乘法分配率”。歸納整合為字母算式:(a+b)×c=a×c+b×c,這時我再此讓學生展開聯(lián)想,讓他們學著老金剛怒目在自己身邊和生活中進行舉例,學生很快舉出(上衣+褲子)×人=上衣×人+褲子×人,(鉛筆+圓珠筆)×本子=鉛筆×本子+圓珠筆×本子等例子等不是十分貼切,但卻富有情趣,孩子在編例子的同時,其實已把握了乘法分配律的特征,學生就不會出現(xiàn)(a+b)×c=a×c+b的錯誤,在生動活潑的“打比方”中,既帶給了學生體驗學習的快樂,又讓我們枯燥深奧的數(shù)學概念成為形象而具體的理解形成,這種教法我在教“乘法交換律”時也用到過,我在結尾時把它總結為“左右搬家”然后講了個鋪子搬家的故事,學生們在津津樂道的故事中,在形象貼切的“打比方”中學懂了數(shù)學知識,收到了良好的效果,真正使數(shù)學課堂貼近生活。
設了這樣一個情境,“一共有25個小組參加植樹 乘法分配律在乘法的運算定律中是一個比較難乘法分配律的.教學是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。
以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,提出問題:共有多少名同學參加了這次植樹活動?通過兩種方法和算式的比較,使學生初步感知乘法分配律。
展示知識的發(fā)生過程,引導學生積極主動探究。先讓學生根據(jù)問題,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式,讓學生觀察,初步感知“乘法分配律”。然后要求學生照樣子說出幾組這樣的等式,引導學生再觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律。這樣學生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅讓學生獲得了數(shù)學基礎知識和基本技能,而且培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。
最后讓學生比較乘法交換律和結合律與分配率的最大區(qū)別,前者只在連乘的同一級運算中運用,后者是在兩級運算中運用,所以,看清題目是一級運算還是兩級運算對決定算法非常重要。這節(jié)課雖然成功引導學生發(fā)現(xiàn)了定律,但教完之后,在練習過程中還有部分學生掌握不好,在后一階段依然要加強練習,邊練習邊總結算法,使學生達到熟能生巧的程度。
《乘法分配律》教學反思14
1、情境的創(chuàng)設激發(fā)了學生的計算熱情。
讓學生在生動具體的情境中學習數(shù)學,這是新課標倡導的新理念.我聯(lián)系學生的生活實際,創(chuàng)設了學生熟悉的購買家具的場景,配上我生動的語言敘述,一下子就把學生代入到了一個有數(shù)學味的問題情境中,吸引了所有學生的注意。緊接著的問題如果你是小紅,你想買什么家具呢?根據(jù)小紅家的需要,你們能提出哪些數(shù)學問題?更是激發(fā)了學生的思維,學生個個積極動腦,躍躍欲試。在學生充分提出各種問題的基礎上,我選擇了有代表性的一個問題讓學生獨立解決,極大地激發(fā)了學生的計算熱情。這一環(huán)節(jié)的教學,讓學生經(jīng)歷了因用而算、以算激用的過程,將算與用緊密結合。
2、多層的設計有利于學生數(shù)學模型的建立。
首先讓學生通過獨立計算,交流計算方法,敘述計算過程等一系列的'筆算乘法的技能訓練,形成一定的算理。然后通過比較124和2132這兩題,它們最大的區(qū)別是什么?在乘的時候,有什么不同呢?如果是四位數(shù)、五位數(shù)乘一位數(shù),你認為該怎么乘呢?這兩個問題的討論、交流,引導學生進行整理反思,讓學生能通過兩位數(shù)乘一位數(shù)遷移到三位數(shù)乘一位數(shù),進而自然聯(lián)想到四位數(shù)、五位數(shù)乘一位數(shù)的計算方法其實都是一樣的,從而幫助學生將零散的知識串起來,有利于學生數(shù)學模型的建立。
需要改進的地方是:在學生探索出筆算方法后,我因為擔心學生沒有聽懂,怕學生做錯,說錯,故而引導太細,學生的學習主動性調(diào)動的不夠。如果我能充分相信學生,大膽放手,讓學生獨立地去想,去做,去說,相信學生的表現(xiàn)會更出色。
《乘法分配律》教學反思15
1、乘法分配律既要注重它的外形結構特點,更要注重其內(nèi)涵。
乘法分配率的結構特點,即兩數(shù)的和乘一個數(shù)(先加后乘)=兩個積的和(先乘后加),使學生從表象上進行初步感知。從而理解(4+2)×25=4×25+2×25是相等的,即左邊表示6個25,右邊也表示6個25,所以(4+2)×25=4×25+2×25。
2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的'和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學生進行一題多解的練習,加深學生對乘法結合律與乘法分配律的理解。
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①豎式計算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便?什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行計算的條件是不一樣的。乘法結合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。
【《乘法分配律》教學反思】相關文章:
乘法分配律教學反思10-18
乘法分配律教學反思07-03
《乘法分配律》教學反思(15篇)07-20
《乘法分配律》教學反思精選15篇05-24
《乘法分配律》教學反思(精選20篇)04-11
《乘法分配律》教學反思匯編15篇08-23
《乘法分配律》教學反思集錦15篇05-12
《乘法分配律》教學反思(通用25篇)11-15
四年級乘法分配律教學反思07-18