爸爸的朋友在线观看,美国毛片免费看,337p日本在线,亚洲女人日B

《最大公因數(shù)》教學(xué)反思

時間:2024-10-27 12:33:04 教學(xué)反思 我要投稿

《最大公因數(shù)》教學(xué)反思

  作為一位優(yōu)秀的老師,課堂教學(xué)是重要的工作之一,通過教學(xué)反思可以有效提升自己的教學(xué)能力,那么問題來了,教學(xué)反思應(yīng)該怎么寫?以下是小編為大家收集的《最大公因數(shù)》教學(xué)反思,歡迎閱讀與收藏。

《最大公因數(shù)》教學(xué)反思

《最大公因數(shù)》教學(xué)反思1

  本課是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和通分以及分?jǐn)?shù)四則計算的基礎(chǔ)。

  第一節(jié)課,根據(jù)教材是以鋪地磚的`生活實際作為切入點,要鋪整分米數(shù)的地磚而且要求要整數(shù)塊,引入了求兩個數(shù)的公因數(shù)的必要性。教材主要的教學(xué)方法是先分別求出兩個數(shù)的因數(shù),并按照從大到小的順序排列出來,從而找出兩個數(shù)的公有因數(shù),稱為這兩個數(shù)的公因數(shù),其中最大的數(shù)就是這兩個數(shù)的最大公因數(shù)。通過例1的教學(xué)后,我引導(dǎo)學(xué)生總結(jié)出求兩數(shù)的公因數(shù)以及最大公因數(shù)的方法。練習(xí)時發(fā)現(xiàn)部分學(xué)生還是容易在找一個數(shù)的因數(shù)的有疏漏,導(dǎo)致求出來的公因數(shù)和最大公因數(shù)出錯。

  第二節(jié)課,我引入了求最大公因數(shù)的另一種方法,分解質(zhì)因數(shù)法,介紹用短除法求兩個數(shù)的最大公因數(shù)。這種方法學(xué)生掌握起來比較容易,但也發(fā)現(xiàn)部分學(xué)生沒有除盡,最后的商不是互質(zhì)數(shù),導(dǎo)致找錯最大公因數(shù)。

  不過相對于第一鐘方法,第二種方法在書寫上更簡便,學(xué)生解題時還是比較容易理解,寫起來也比較簡潔,大部分學(xué)生在求幾個數(shù)的最大公因數(shù)時還會選擇第二種方法。當(dāng)然,我還是鼓勵學(xué)生選擇自己喜歡的方法,關(guān)鍵是能理解,懂應(yīng)用。

《最大公因數(shù)》教學(xué)反思2

  教學(xué)內(nèi)容:第26~28頁的例3、例4、“練一練”、“練習(xí)五”的第1~5題。

  目標(biāo)預(yù)設(shè):

  1、理解公因數(shù)的含義,掌握求兩個公因數(shù)和最大公因數(shù)的方法。

  2、經(jīng)歷“猜測——驗證”的數(shù)學(xué)學(xué)習(xí)過程,感受科學(xué)探究的一般方法,培養(yǎng)抽象思維能力,積累數(shù)學(xué)活動經(jīng)驗。

  3、感受數(shù)學(xué)的奇妙,培養(yǎng)對數(shù)學(xué)的積極情感。

  教學(xué)重點和難點:理解公因數(shù)的含義,掌握求兩個數(shù)最大公因數(shù)的方法。

  課程實施:

  一、自主構(gòu)建公因數(shù)意義

  1、出示邊長6厘米、邊長4厘米的小正方形個若干以及一個長18厘米、寬12厘米的長方形。

  猜一猜:你覺得哪一種正方形可以將這個正方形鋪滿。

  2、組織學(xué)生同桌合作,擺放小正方形,

  教師要幫助學(xué)有困難的小組完成活動任務(wù)。

  3、交流:邊長6厘米的正方形紙可以正好鋪滿這個長方形。

  為什么邊長6厘米的正方形正好鋪滿這個長方形?

  結(jié)合剛才的操作活動體驗,學(xué)生明白:因為12÷6=2(豎排放2行),18÷6=3(橫排放3列),也就是6既是12的因數(shù),也是18的因數(shù),所以可以正好擺滿。

  4、討論:還有哪些邊長是整厘米的正方形紙片也能正好鋪滿這個長方形?簡單地解釋自己推測的理由。

  5、只要邊長的厘米數(shù)既是12的因數(shù),又是18的因數(shù),就能正好鋪滿這個長方形嗎?

  6、提問:4是12和18的公因數(shù)嗎?

  7、通過剛才的學(xué)習(xí),你有什么話想說嗎?

  二、獨立探索找公因數(shù)的方法。

  1、8和12的公因數(shù)有哪些?最大公因數(shù)是幾?

  放手讓學(xué)生自己探索解決問題的方法。

  2、交流:學(xué)生出現(xiàn)的方法:

 。1)、分別寫出8和12的因數(shù),再找一找他們的公因數(shù);

 。2)、先找8的因數(shù),再從8的因數(shù)中找12的因數(shù);

  ……

  交流時結(jié)合自己的方法說說這樣找的理由,

  3、“集合圈”

  我們同樣也可以用集合圈表示8和12的公因數(shù)。

  出示集合圈,先讓學(xué)生自己填寫,再說說每一部分表示的含義。

  4、觀察比較,感受公因數(shù)的有限性,

  公因數(shù)的集合圈與公倍數(shù)有什么不同的地方?為什么公因數(shù)集合圈中不需要省略號?引導(dǎo)學(xué)生從“因數(shù)的有限性”推想出“兩個數(shù)的公因數(shù)的個數(shù)是有限的”。

  5、練一練

  先讓學(xué)生根據(jù)要求完成。通過交流,進(jìn)一步理解找兩個數(shù)公因數(shù)和最大公因數(shù)的方法,感受兩者的聯(lián)系與區(qū)別,

  三.促進(jìn)知識向技能的轉(zhuǎn)化

  1、“練習(xí)五”第1題

  讓學(xué)生獨立完成,進(jìn)一步理解集合圈的表示方法,深化對求兩個數(shù)最大公因數(shù)的方法的認(rèn)識。

  2、“練習(xí)五”第4題

 、畔茸寣W(xué)生自主判斷第一組數(shù),然后交流各自的方法,比較得出“利用2.3.5倍數(shù)的特征”進(jìn)行判斷,可以提高正確率。

 、瞥鍪酒渌麕捉M讓學(xué)生選擇合理的方法進(jìn)行判斷,同時提醒兩個數(shù)的公因數(shù)可以有2.3.5中的多個,為后面學(xué)習(xí)月份積累策略。

  3、“練習(xí)五”第5題

  要啟發(fā)學(xué)生用不同的方法找出每組數(shù)的最大公因數(shù),提倡靈活運用各種策略快速解題,

  四、通過本節(jié)課的學(xué)習(xí),你有哪些收獲?

  五.作業(yè)布置

  “練習(xí)五”第2.3題

  課后反思:

  這部分內(nèi)容的結(jié)構(gòu)與“公倍數(shù)和最小公倍數(shù)”基本相同,結(jié)合具體的情境,引導(dǎo)學(xué)生通過觀察、操作、分析、比較、抽象和概括等活動,探索并理解公因數(shù)、最大公因數(shù)的含義,掌握求兩個數(shù)的最大公因數(shù)的方法。

  1、我讓學(xué)生依托動手操作,加強對比觀察,溝通新舊知識的聯(lián)系,優(yōu)化概念引進(jìn)的過程。在教學(xué)例3時,我分四步組織學(xué)生

  的活動。第一步,讓學(xué)生“分別用邊長6厘米和4厘米的正方形紙片鋪長18厘米、寬12厘米的長方形”,鋪前先思考:邊長是多少的正方形可以鋪滿這個長方形?通過操作,學(xué)生都知道邊長6厘米的正方形可以鋪滿長18厘米、寬12厘米的長方形。引導(dǎo)學(xué)生具體感知公因數(shù)的含義。第二步,組織討論“還有哪些邊長是整厘米數(shù)的正方形紙片也能正好鋪滿這個長方形”,通過思考,學(xué)生明白:“只要邊長的厘米數(shù)既是12的因數(shù),又是18的因數(shù),就能正好鋪滿”這個長方形。第三步,可以先讓學(xué)生說一說1、2、3和6的共同特征,再告訴學(xué)生1、2、3和6的共同特征,再告訴學(xué)生“1、2、3和6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)。第四步,讓學(xué)生說一說4為什么不是12和18的公因數(shù),使學(xué)生加深對公因數(shù)含義的理解,知道4是12的因數(shù),但不是18的因數(shù),所以4就不是12和18的公因數(shù)。通過正、反兩方面的比較,優(yōu)化概念的`形成。

  2、著眼于問題的解決,鼓勵學(xué)生自主探索,逐步形成概念結(jié)構(gòu)。教學(xué)例4是,我讓學(xué)生先獨立思考,用自己的方法找出8和12的公因數(shù)和最大的公因數(shù)。再通過交流,使學(xué)生在相互啟發(fā)的過程中進(jìn)一步打開思路,明確方法。由于學(xué)生已經(jīng)積累了較為豐富的求兩個數(shù)的最小公倍數(shù)的方法,因而這里的重點是讓學(xué)生在自主探索的基礎(chǔ)上合乎邏輯地表達(dá)自己的思考過程,并體會不同方法的內(nèi)在一致性。這時,我適時引導(dǎo)學(xué)生建立概念結(jié)構(gòu):因數(shù)——公因數(shù)——最大公因數(shù),并且辨析這些概念的聯(lián)系與區(qū)別。此外,考慮到學(xué)生也已經(jīng)初步認(rèn)識了用集合圖表示兩個相交的集合圈,所以我讓學(xué)生根據(jù)對有關(guān)概念的理解,獨立把8和12的因數(shù)分別填在集合圖中的合適部分,然后再看圖說說各自的想法,說說每一個區(qū)域內(nèi)的數(shù)分別表示什么,把靜態(tài)的集合圖轉(zhuǎn)化成動態(tài)的探索對象,讓學(xué)生加深對集合圖的理解,也使集合思想的滲透落到實處。

  3、練習(xí)的重點是讓學(xué)生通過操作和填空,進(jìn)一步理解求公因數(shù)和最大公因數(shù)的方法。讓學(xué)生在解決問題的過程中提煉解題策略,優(yōu)化概念應(yīng)用的過程。

《最大公因數(shù)》教學(xué)反思3

  《兩三位數(shù)除以一位數(shù)》商是兩位數(shù)是在學(xué)生學(xué)習(xí)了商是三位數(shù)和有余數(shù)除法的基礎(chǔ)上進(jìn)行的,它是學(xué)習(xí)除數(shù)是多位數(shù)除法的基礎(chǔ)。因此要在引導(dǎo)學(xué)生解決具體問題的過程中,切實理解算理,掌握計算方法。

  1、聯(lián)系舊知,激發(fā)興趣

  本節(jié)課我有意識的在一開始設(shè)計了搶答環(huán)節(jié),讓學(xué)生判斷大屏幕上幾道題目的商的位數(shù),進(jìn)而發(fā)現(xiàn)不同,激發(fā)興趣,引入本節(jié)課的學(xué)習(xí)。從效果上看,學(xué)生在判斷的過程中比較感興趣,并能初步感受與舊知的聯(lián)系與不同,達(dá)到了預(yù)期的目的。

  2、放手學(xué)生,設(shè)置大問題

  本節(jié)課我在這方面做的不好。在擺小棒理解算理環(huán)節(jié),我領(lǐng)的比較多,學(xué)生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學(xué)生最后也弄明白了該如何分小棒,但學(xué)生的能力沒有得到提高。在于老師的建議下,在重建設(shè)計中,我會注意放手,設(shè)置大問題。比如:“請同學(xué)們看著大屏幕上的小棒,想一想應(yīng)該怎樣分呢?先自己想一想,然后同桌交流一下!弊寣W(xué)生帶著問題思考,在思考中考慮擺小棒的'全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當(dāng)引領(lǐng)點撥,但這和我之前的設(shè)計感覺就不一樣了,后者更能體現(xiàn)學(xué)生主體地位。在這方面,我今后還應(yīng)提高意識,不斷實踐。

  3、設(shè)計新穎的練習(xí)題,增多練習(xí)內(nèi)容。

  計算教學(xué),單純的讓學(xué)生計算勢必會使學(xué)生產(chǎn)生厭倦。我聯(lián)系學(xué)生實際和生活實際,設(shè)計出多種多樣的練習(xí)題,比如:計算之后讓學(xué)生思考問題“想一想:三位數(shù)除以一位數(shù),什么時候商是三位數(shù),什么時候商是兩位數(shù)?”或讓學(xué)生“火眼金睛”辨別對錯,或讓學(xué)生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的一般環(huán)節(jié),將思路滲透到日常教學(xué)中,或在最后讓學(xué)生根據(jù)所學(xué)再來一組比賽等,結(jié)合學(xué)生不同的計算階段提出不同的要求和練習(xí)形式,使單調(diào)枯燥的計算練習(xí)變得生動有趣,達(dá)到了較好的教學(xué)效果。

  我將以本次講課為契機,在今后的教學(xué)中應(yīng)用本次活動學(xué)到的知識,加以實踐,不斷提高自身的教學(xué)水平。

《最大公因數(shù)》教學(xué)反思4

  一、分析基礎(chǔ)知識,準(zhǔn)確制定教學(xué)目標(biāo)。

  本節(jié)課是在學(xué)生已經(jīng)理解和掌握因數(shù)、倍數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和分?jǐn)?shù)四則計算的基礎(chǔ)。我根據(jù)教材的編寫特點準(zhǔn)確地制定了教學(xué)目標(biāo),即理解公因數(shù)及最大公因數(shù)的意義。知道任意兩個數(shù)都有公因數(shù);能夠采用枚舉法找到兩個數(shù)的最大公因數(shù)。通過動手、觀察、思考等教學(xué)活動,從拼擺過程中發(fā)現(xiàn)公因數(shù),再通過進(jìn)一步探究明確公因數(shù)及最大公因數(shù)的含義。

  二、在現(xiàn)實的情境中教學(xué)概念,借助直觀操作活動,經(jīng)歷概念的形成過程。

  以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。而本節(jié)課注意引導(dǎo)學(xué)生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個長方形拼成一個新的長方形。其次,引導(dǎo)學(xué)生觀察這樣的幾組數(shù)據(jù)與長方形面積之間的關(guān)系——右面的這些數(shù)據(jù)都是左面這些數(shù)據(jù)的因數(shù)。三是揭示出公因數(shù)和最大公因數(shù)的含義——指出用紅筆標(biāo)出的這些數(shù)據(jù)是左面這兩個數(shù)的公因數(shù),找到這里面最大的一個公因數(shù),完成由形象到抽象的過程,把感性認(rèn)識提升為理性認(rèn)識。

  三、把握內(nèi)涵外延,準(zhǔn)確理解概念的含義。

  概念的.內(nèi)涵是指這個概念的所反映的一切對象的共同的本質(zhì)屬性。公因數(shù)是幾個數(shù)公有的因數(shù),可見“幾個數(shù)公有的”是公因數(shù)的本質(zhì)屬性。因此在因數(shù)的基礎(chǔ)上學(xué)習(xí)公因數(shù),關(guān)鍵在于突出“公有”的含義。本節(jié)課突出概念的內(nèi)涵是“既是……也是……”即“公有”。教學(xué)中,我首先讓學(xué)生在練習(xí)本上找出12和16的因數(shù),然后借助直觀的集合圖揭示出“既是12的因數(shù),又是16的因數(shù)”這句話的含義,幫助學(xué)生進(jìn)一步理解公因數(shù)和最大公因數(shù)的意義。這樣安排有兩點好處:一是學(xué)生通過操作活動,能體會公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。

  概念的外延是指這個概念包含的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,這對加深概念的認(rèn)識很有好處。本節(jié)課我注意利用反例,來凸現(xiàn)公因數(shù)的含義。在用集合圖法來表示12和16的公因數(shù)的時候,找到填寫錯誤的學(xué)生的例子,提示學(xué)生注意:并集里填寫的是兩個數(shù)的公因數(shù),而沒有交在一起的集合圖中,只填寫這兩個數(shù)的都有的因數(shù),從而進(jìn)一步明確公因數(shù)的概念。

  四、教學(xué)中的不足:

  教師的提問有時指向性不是很強,學(xué)生不能很快地明白老師的意圖,影響了學(xué)生的思考,須進(jìn)一步提高。在教學(xué)“兩個長和寬都是整厘米數(shù)的長方形的面積分別是2平方厘米和3平方厘米,這兩個長方形的長、寬分別是多少?”時,學(xué)生有些困難,我應(yīng)該讓學(xué)生動手在本上畫一畫,幫助學(xué)生找到,降低難度,這點考慮不周,沒有切實聯(lián)系實際。

  自己要學(xué)的東西還有很多,應(yīng)注意提高自身修養(yǎng)。多閱讀、多聽課,努力提高自己的教學(xué)水平,更好地為學(xué)生服務(wù)。

《最大公因數(shù)》教學(xué)反思5

  《公因數(shù)和最大公因數(shù)》這部分內(nèi)容是在學(xué)生理解因數(shù)與倍數(shù)的相互關(guān)系,會找1~100的自然數(shù)的因數(shù),并且在學(xué)習(xí)面積概念時積累了“密鋪”的活動經(jīng)驗開展教學(xué)的。對于《公因數(shù)和最大公因數(shù)》這樣一節(jié)概念課的教學(xué),其教學(xué)重、難點我認(rèn)為就是對“公”字意義的理解,也就是如何體驗這個數(shù)既是一個數(shù)的因數(shù),又是另一個數(shù)的因數(shù),才是兩個數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學(xué)重點、突破教學(xué)難點,結(jié)合我們本學(xué)期的教研主題“如何設(shè)計有效的教學(xué)活動,達(dá)成教學(xué)目標(biāo)”,我主要從以下幾方面入手來嘗試教學(xué):

  一、重視活動體驗,讓學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程。

  第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學(xué)生帶著自己的思考去操作驗證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。

  第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學(xué)生可以熟練地操作驗證,在活動體驗和交流中進(jìn)一步感知選擇正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。

  第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學(xué)生繼續(xù)操作驗證。這時學(xué)生已經(jīng)有了前兩次的操作感知,積累了充分的活動經(jīng)驗,這些活動經(jīng)驗可以支撐他們?nèi)ネ评、想象,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。

  然后,發(fā)揮教師的主導(dǎo)作用:“我們前后共擺了三個長方形,得到了黑板上的這些數(shù)據(jù)。仔細(xì)想一想,這些正方形的邊長和什么有關(guān)?有怎樣的.關(guān)系呢?”引導(dǎo)學(xué)生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的概念。

  通過創(chuàng)設(shè)以上教學(xué)活動,讓學(xué)生在活動中實實在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動經(jīng)驗,充分體驗公因數(shù)的意義。

  二、借助幾何直觀,增進(jìn)學(xué)生對概念意義的理解。

  通過上面的操作體驗和思考認(rèn)知,學(xué)生認(rèn)識了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學(xué)生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個概念之間存在著一些聯(lián)系。為了幫助學(xué)生深入地理解概念,提出問題:“對比這三個概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個說一說!币龑(dǎo)學(xué)生進(jìn)一步地思考。這時學(xué)生交流:“‘因數(shù)’是一個數(shù)的,而‘公因數(shù)’是兩個或兩個以上的數(shù)公有的”、“‘最大公因數(shù)’首先它也是‘公因數(shù)’中的一個,而且是‘公因數(shù)’中最大的一個!备鶕(jù)學(xué)生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的關(guān)系,增進(jìn)了學(xué)生對概念意義的理解。

  三、通過實際問題,溝通數(shù)學(xué)概念與現(xiàn)實世界的聯(lián)系。

  在學(xué)生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學(xué)生想到:這是個用因數(shù)的知識解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時,引導(dǎo)學(xué)生改編成一個用公因數(shù)來解決的問題,學(xué)生首先想到了

  少需要兩個數(shù)據(jù),于是有的學(xué)生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的問題。在學(xué)生思考的過程,既是在進(jìn)一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實意義,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象能力。

  一節(jié)課下來,我發(fā)現(xiàn)學(xué)生是最棒的!在不斷地實踐探索中,他們的認(rèn)識不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。

  當(dāng)然,仔細(xì)琢磨,這節(jié)課還有很多可圈可點之處,如:

  1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學(xué)的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點。

  2、因為操作感知時間較長,在本節(jié)課的第二個知識目標(biāo)——找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。

  帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時間是有限的,個人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導(dǎo)、同行們的指點與批評!

《最大公因數(shù)》教學(xué)反思6

  本節(jié)課,我從學(xué)生已有的知識和經(jīng)驗出發(fā),精心設(shè)計一個童話情境,激發(fā)了學(xué)生的學(xué)習(xí)欲望。先讓學(xué)生動手操作、自學(xué)討論,幫助王叔叔選擇地板磚。再思考探索正方形地板磚的邊長與長方形地面的長、寬之間的關(guān)系。然后用問題的形式,通過復(fù)習(xí)16和12的因數(shù),讓學(xué)生再找兩個數(shù)的因數(shù)、找兩個數(shù)的公有的因數(shù)、找兩個數(shù)公有的因數(shù)中最大的因數(shù)的過程中,發(fā)現(xiàn)用邊長1厘米、2厘米、4厘米的`正方形都正好鋪滿長16厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、4這些數(shù)和16、12有什么關(guān)系,同時揭示公因數(shù)和最大公因數(shù)的概念。

  總之,我在教學(xué)的過程中,不但復(fù)習(xí)鞏固舊知,讓學(xué)生在不知不覺中學(xué)會了新知。而且還讓學(xué)生帶著自己的數(shù)學(xué)現(xiàn)實參與數(shù)學(xué)課堂,不斷地利用原有的經(jīng)驗背景對新的問題做出解釋。此過程中我還注意了鼓勵每一個學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語言表述自己的發(fā)現(xiàn),對于有困難的學(xué)生,我從方法上作進(jìn)一步指導(dǎo),小組長幫助,生生互幫等。以“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者為主。培養(yǎng)了學(xué)生動手操作的能力,使他們在愉快的學(xué)習(xí)氛圍中學(xué)會了本節(jié)課的內(nèi)容。

《最大公因數(shù)》教學(xué)反思7

  學(xué)生的學(xué)習(xí)過程是一種特殊的認(rèn)知過程,必須在積極主動的情況下在自己的逐步思考和探究中達(dá)到解決的目的。

  1、小組討論合作學(xué)習(xí)研究多了,獨立思考就有所忽視。從數(shù)學(xué)學(xué)習(xí)的本質(zhì)來說,獨立思考是主流,合作交流應(yīng)在獨立思考的基礎(chǔ)上進(jìn)行。只有在獨立思考的前提下,才有交流的可能。因此,在本課設(shè)計時,求兩數(shù)的最大公約數(shù)。先讓學(xué)生課前獨立探究方法,在學(xué)生有充分獨立思考的基礎(chǔ)上再交流評價。才真正實現(xiàn)每個學(xué)生潛質(zhì)的開發(fā)和學(xué)生之間真正的差異互補。

  2、獨特的見解總是在主體迷戀執(zhí)著,充分自由的狀態(tài)中萌芽出來的,在教學(xué)中應(yīng)放下架子,蹲下身子來傾聽學(xué)生,相信每個學(xué)生都會有精彩的表現(xiàn)。正如陶行知所說的:“學(xué)生能做許多你不能做的事,也能做許多你認(rèn)為他不能做的事。”不要小看了孩子,要對每位孩子充滿信心,從而使課堂頻頻發(fā)出精彩的光芒。如本課時在開放題的解答過程中,學(xué)生能在一些簡單的'嘗試開始,從中逐步發(fā)現(xiàn)其中的規(guī)律,以至于應(yīng)用獲得的規(guī)律來實現(xiàn)問題解決的最優(yōu)化,不得不驚奇孩子能力的巨大。

  3、當(dāng)數(shù)學(xué)問題情境作用于思考者時就有可能展開數(shù)學(xué)思維活動,可以說,問題的設(shè)計和問題的情境的創(chuàng)設(shè)是促進(jìn)數(shù)學(xué)思考的客觀性因素。讓學(xué)生在問題情境中層層推出數(shù)學(xué)思考“還有沒有其他的方法”“他的方法你認(rèn)為怎樣”“你是怎么想的”鼓勵表揚敢于思索的同學(xué),錯誤的回答也是對正確知識的一種辨析過程,新知識對每個每一次學(xué)習(xí)的學(xué)生都是一個發(fā)現(xiàn)、創(chuàng)造的大空間。

  兩個數(shù)的最大公約數(shù)的教學(xué)反思有探究就有發(fā)現(xiàn),有發(fā)現(xiàn)就是

  學(xué)習(xí)的成功。成功所帶來的喜悅總是進(jìn)一步學(xué)習(xí)的最大動力,自主探究的課堂,為個性不同的學(xué)生的發(fā)展留下了必要的空間,讓他們都有機會表達(dá)自己的思想,以自己獨特的方式去學(xué)習(xí)數(shù)學(xué),發(fā)展知識,各自體驗到學(xué)習(xí)數(shù)學(xué)的成功感。

《最大公因數(shù)》教學(xué)反思8

  公因數(shù)與最大公因數(shù)這一課教材設(shè)計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學(xué)生在解決實際問題中探索公因數(shù)的認(rèn)識。因此,在教學(xué)中要重視通過嘗試解決問題讓學(xué)生聯(lián)系已有的知識來引入公因數(shù)的認(rèn)識。使學(xué)生初步體會學(xué)習(xí)公因數(shù)在解決實際問題中有著重要作用。

  這節(jié)課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學(xué)生作業(yè)反饋情況來看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學(xué)生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進(jìn)去,這一情況在預(yù)設(shè)時我雖然想到了學(xué)生會錯,也在課堂上進(jìn)行了說明,但是少數(shù)學(xué)生還是出現(xiàn)了錯誤。

  用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的方法參考,在這里的`教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時,有些學(xué)生運用了一些比較獨特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進(jìn)行對比,體會哪種方法更好,更適合自己,進(jìn)而對自己的算法進(jìn)行優(yōu)化。

《最大公因數(shù)》教學(xué)反思9

  1、創(chuàng)設(shè)情境引入新知。

  我在教學(xué)時,改變教材中從單調(diào)的計算引出概念的做法,而是創(chuàng)設(shè)情景,通過生動有趣的畫面,吸引學(xué)生積極思維,其特有的感染力和表現(xiàn)力,能直觀生動地對學(xué)生心理起到催化作用,有效地激發(fā)了學(xué)生探究新知識的興趣,使教與學(xué)始終處于活化狀態(tài)。

  2、合理利用教材。

  “循環(huán)小數(shù)”是學(xué)生較難準(zhǔn)確地掌握和表述的一個概念,特別是表述其意義的'“從某一位起”、“依次”、“不斷”、“重復(fù)出現(xiàn)”等抽象說法,學(xué)生難以理解。這節(jié)課的內(nèi)容也較多,我打破教材編排順序,將教學(xué)內(nèi)容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計算400÷75讓學(xué)生計算發(fā)現(xiàn)商中重復(fù)出現(xiàn)一個相同的數(shù)字,再以王鵬喜歡游泳引出計算25÷22讓學(xué)生計算發(fā)現(xiàn)商中有兩個不斷重復(fù)出現(xiàn)的數(shù)字。從而引導(dǎo)學(xué)生發(fā)現(xiàn)發(fā)現(xiàn)商的特點,引出“循環(huán)小數(shù)”。這樣可以將難點分散,各個擊破。

  3、引導(dǎo)學(xué)生探索,讓學(xué)生成為真正的參與者。

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!睌(shù)學(xué)學(xué)習(xí)不應(yīng)是簡單個體接受知識的過程,而是一個主體對自己感興趣的且是現(xiàn)實的生活性主題的探究與發(fā)展的過程。在新課中,我首先從生活中的現(xiàn)象入手,再引導(dǎo)學(xué)生主動探究數(shù)學(xué)中的問題,通過讓學(xué)生選擇自己感興趣的信息試算、觀察、分析、比較、討論等學(xué)習(xí)方式充分調(diào)動學(xué)生多種感官的參與,給學(xué)生提供自主合作探究的空間,讓學(xué)生全面參與新知的發(fā)生、發(fā)展和形成過程,使學(xué)生真正體驗到探究的樂趣和做數(shù)學(xué)的價值。

  當(dāng)然,在這節(jié)課中也有很多不足之處。如我在教學(xué)中過多地注意預(yù)設(shè),使教學(xué)放不開手腳,環(huán)節(jié)安排趨于飽和,這樣壓縮了學(xué)生思維空間,在今后的教學(xué)中,特別是環(huán)節(jié)預(yù)設(shè)應(yīng)在于精、在于厚實。

《最大公因數(shù)》教學(xué)反思10

  日本著名數(shù)學(xué)教育家米山國藏指出:“作為知識的數(shù)學(xué)出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學(xué)的精神,數(shù)學(xué)的思想、研究的方法和著眼點等,這些隨時隨地發(fā)生作用,使他們終身受益!睆倪@個教學(xué)的設(shè)計中我們可以看到,教學(xué)中不只是讓學(xué)生接受一個概念知識或一種求最大公約數(shù)的方法;不只是注重數(shù)學(xué)形式層面的教學(xué),而是更重視數(shù)學(xué)發(fā)現(xiàn)層面的`教學(xué),即讓學(xué)生在經(jīng)歷“數(shù)學(xué)家”解決問題的過程中去理解、去感受一種數(shù)學(xué)的思想和觀念──數(shù)學(xué)化思想。學(xué)生先是感知地板磚中隱含的數(shù)學(xué),會用約數(shù)、倍數(shù)知識解釋簡單的生活現(xiàn)象,進(jìn)而思考并嘗試解決畫廊內(nèi)裝飾畫的設(shè)計,學(xué)生自然會聯(lián)想到地板磚中數(shù)學(xué)知識。但是,從解釋到應(yīng)用設(shè)計,在沒有學(xué)習(xí)公約數(shù)的情況下會存在較大的難度。于是,創(chuàng)設(shè)了做數(shù)學(xué)的空間。讓他們在設(shè)計正方形的過程中,逐漸感知公約數(shù)的存在,建立了解決這種問題的數(shù)學(xué)模型。再反思與總結(jié),引導(dǎo)學(xué)生自己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。

  數(shù)學(xué)化思想觀念是指用數(shù)學(xué)眼光去認(rèn)識和處理周圍事物或數(shù)學(xué)問題,可以培養(yǎng)學(xué)生良好的“用數(shù)學(xué)”意識,使數(shù)學(xué)關(guān)系成為學(xué)生的一種思維模式。而我們的課堂中,大多還是圍繞知識就事論事,沒有從形成學(xué)生思維模式的角度去展開知識形成和問題解決的思維過程,去注重現(xiàn)代的數(shù)學(xué)思想,去隱含重要的數(shù)學(xué)方法,這樣,學(xué)生學(xué)到的只是知識的堆砌,沒有自主的發(fā)展和對數(shù)學(xué)本質(zhì)的領(lǐng)悟。

《最大公因數(shù)》教學(xué)反思11

  本課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行教學(xué),通過找公因數(shù)的過程,讓學(xué)生懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,為了加深理解,可以進(jìn)一步引導(dǎo)學(xué)生觀察分析、討論,讓學(xué)生明確找兩個數(shù)公因數(shù)的方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。在此過程中要注意鼓勵每一個學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語言表述自己的發(fā)現(xiàn),但不要歸納成固定的模式讓學(xué)生記憶。對于找公因數(shù)有困難的學(xué)生,教師要從方法上作進(jìn)一步指導(dǎo)!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的.主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者!痹诒竟(jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計成為學(xué)生探索問題,解決問題的過程,這樣設(shè)計各個環(huán)節(jié)的教學(xué)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮,課堂成了學(xué)習(xí)的天地。

《最大公因數(shù)》教學(xué)反思12

  教材共提供了三種不同的方式求兩個數(shù)的最大公因數(shù),方法一:分別寫出兩個數(shù)的因數(shù),再找最大公因數(shù);方法二:先找出一個數(shù)的所有因數(shù),再看哪些因數(shù)是另一個數(shù)的因數(shù),最后從中找出最大的;方法三:用分解質(zhì)因數(shù)的方法找兩個數(shù)的最大公因數(shù)。我還給學(xué)生補充了用短除法求最大公因數(shù)。這么多方法,教師應(yīng)該向?qū)W生重點推薦哪種呢?教材中補充拓展的分解質(zhì)因數(shù)方法學(xué)生是否都應(yīng)掌握呢?短除法是否都應(yīng)掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學(xué)中許多學(xué)生暗暗地就選擇了它。方法二與方法三相比,在數(shù)據(jù)偏大且因數(shù)較多時,如果用分解質(zhì)因數(shù)的方法來求最大公因數(shù)不僅正確率高,而且速度也會大幅提高。但是用分解質(zhì)因數(shù)的方法來求最大公因數(shù)對一些學(xué)生來說又有相當(dāng)?shù)碾y度,至于為什么要把兩個數(shù)全部公有的質(zhì)因數(shù)相乘,一些學(xué)生還不太明白。

  在教學(xué)中,我認(rèn)為教師不能僅僅只是介紹,還有必要讓學(xué)生們掌握這種方法技能。用短除法求最大公因數(shù)我感覺比較簡單,學(xué)生好接受,好理解。但是短除法求最大公因數(shù)一直要除到所得的商是互質(zhì)數(shù)時為止。如果用此法,學(xué)生必須首先認(rèn)識“互質(zhì)數(shù)”,并能正確判斷。雖然有關(guān)“互質(zhì)數(shù)”的`內(nèi)容教材83頁“你知道嗎”中有所涉及,相應(yīng)知識的考查在練習(xí)十五第6題中也有所體現(xiàn)。至于學(xué)生選用哪種策略找兩個數(shù)的最大公因數(shù),我并不強求。從作業(yè)反饋情況來看,多數(shù)學(xué)生更喜歡方法一,但是我們要提醒學(xué)生養(yǎng)成先觀察數(shù)據(jù)特點,然后再動筆的習(xí)慣。如兩個數(shù)正好成倍數(shù)關(guān)系或互質(zhì)數(shù)關(guān)系時,許多學(xué)生仍舊按部就班地采用一般策略來解決,全班只有少數(shù)的學(xué)生能夠根據(jù)“當(dāng)兩個數(shù)成倍數(shù)關(guān)系時,較小數(shù)就是它們的最大公因數(shù)”的規(guī)律快速找到最大公因數(shù)。在這一方面,教師在教學(xué)中要率先垂范,做好榜樣。在鞏固練習(xí)過程中,也應(yīng)加強訓(xùn)練,每次動筆練習(xí)之前補充一個環(huán)節(jié)——觀察與思考。使學(xué)生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來。

  這節(jié)課本來想把教材練習(xí)十五的習(xí)題講解完,但是時間不夠用了,只好下節(jié)課再講。

《最大公因數(shù)》教學(xué)反思13

  本節(jié)課教學(xué)的內(nèi)容是認(rèn)識公因數(shù)、最大因數(shù)以及求兩個數(shù)的最大公因數(shù)的方法,這些知識是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上教學(xué)的。結(jié)合本節(jié)課的特點,聯(lián)系本班學(xué)生的實際情況,教師在教學(xué)過程中做了如下的嘗試

  一、適時地滲透集合思想。在教學(xué)例1時,解題過程不僅呈現(xiàn)了用列舉法解決問題。還引導(dǎo)學(xué)生用集合圖來表示答案,從而滲透了集合思想,為后續(xù)的學(xué)習(xí)奠定感性認(rèn)識。

  二、關(guān)注學(xué)生探究活動的空間,將自主探究活動貫徹始終。在教學(xué)中,教師為學(xué)生創(chuàng)設(shè)了三次自主探究的機會。即一在情境中通過動手操作認(rèn)識公因數(shù),二用集合圖表示因數(shù)之間的關(guān)系,三用自己的方法求出兩個數(shù)的最大公因數(shù)。在這幾次的探究活動中,教師始終積極地調(diào)動學(xué)生的情感,啟發(fā)他們主動參與,引導(dǎo)學(xué)生感知、理解,從而在腦中形成系統(tǒng)的知識體系。

  本節(jié)課是教學(xué)運用最大公因數(shù)的有關(guān)知識來解決生活中的實際問題。通過創(chuàng)設(shè)生活情境,讓學(xué)生借助學(xué)具擺一擺,算一算或在紙上用彩筆畫一畫的`方法把出現(xiàn)的幾種情況記錄下來,既提高學(xué)生的學(xué)習(xí)積極性,也讓學(xué)生體會到新知與生活的密切聯(lián)系。同時,通過引導(dǎo)學(xué)生自主探索、組織交流并驗證結(jié)論,讓學(xué)生體會獲得成功的喜悅,更加積極地探索新知,掌握所學(xué)知識。

  本節(jié)課的不足之處在于練習(xí)部分時間過于倉促,沒有足夠的時間讓學(xué)生交流與理解,部分學(xué)困生掌握不夠到位。這需要教師在今后教堂中合理安排時間,避免時間過于緊迫。

《最大公因數(shù)》教學(xué)反思14

  公因數(shù)和最大公因數(shù)這一課應(yīng)注重引導(dǎo)學(xué)生體驗“概念形成”的過程,讓學(xué)生“研究學(xué)習(xí)”、“自主探索”,學(xué)生不應(yīng)是被動接受知識的容器,而應(yīng)是在學(xué)習(xí)過程中主動積極的參與者,是認(rèn)知過程的探索者,是學(xué)習(xí)活動的主體。

  我是這樣組織教學(xué)的:

  在教學(xué)過程中,我們不僅要求學(xué)生掌握抽象的數(shù)學(xué)結(jié)論,更應(yīng)注重學(xué)生概念形成的過程。應(yīng)引導(dǎo)學(xué)生參與探討知識的形成過程,盡可能挖掘?qū)W生潛能,能讓學(xué)生通過努力,自己解決問題,形成概念。通過創(chuàng)設(shè)生活情境,幫助王叔叔鋪地裝,將學(xué)生自然地帶入求知的情境中去,在學(xué)生已有知識經(jīng)驗的基礎(chǔ)上放手讓學(xué)生去交流、探索。“哪一個正方形紙片能正好鋪滿長16厘米寬12厘米的長方形,為什么?”這樣更利于培養(yǎng)學(xué)生自主探索、提出問題和解決問題的能力。接著進(jìn)一步引導(dǎo)學(xué)生思考“還有哪些正方形紙片也能正好鋪滿長16厘米寬12厘米的長方形?”“為什么邊長是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長是3厘米的正方形地磚不能正好鋪滿?”讓學(xué)生在反復(fù)地思考和交流中加深對公因數(shù)這一概念的理解。

  教師拋出問題后,讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動了已有知識經(jīng)驗、方法、技能,找出“16和12的公因數(shù)和最大公因數(shù)”。在這個過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識。

  思考:

  1.增強師生和生生之間的互動

  在教學(xué)過程中各個環(huán)節(jié)的銜接不夠緊湊,本課時的教學(xué)內(nèi)容比較枯燥,在課堂上如何調(diào)動學(xué)生的積極性,活躍課堂氣氛,使學(xué)生學(xué)的輕松、扎實。今后的教學(xué)中,在這一點上要都多下功夫。本課時的教學(xué)中,在組織學(xué)生交流找“16和12的'公因數(shù)”的方法時,指名回答的形式過于單調(diào),有的同學(xué)沒有選著擺一擺的方法,而是直接用邊長去除以小正方形邊長來判斷,我沒有很好利用學(xué)生生成的資源,幫助學(xué)生理解,局限學(xué)生的思維發(fā)展。

  2.方法多樣化和方法優(yōu)化

  在組織學(xué)生進(jìn)行交流時,應(yīng)該注重引導(dǎo)學(xué)生有層次地介紹各種不同的方法。同時還要引導(dǎo)學(xué)生進(jìn)行方法的比較和優(yōu)化。

《最大公因數(shù)》教學(xué)反思15

  “公因數(shù)和最大公因數(shù)”是第三單元第三課時的內(nèi)容,在此之前,已經(jīng)學(xué)過了公倍數(shù)和最小公倍數(shù),掌握了公倍數(shù)和最小公倍數(shù)的概念和求法,這節(jié)課的教學(xué)過程與公倍數(shù)的教學(xué)非常相似,吸取了公倍數(shù)教學(xué)時的教訓(xùn),本節(jié)課教學(xué)公因數(shù)概念的時候,我先讓學(xué)生讀題,說清題意,再進(jìn)行操作,這樣以來學(xué)生是帶著問題去操作的,不像公倍數(shù)時部分學(xué)生題目都理解不了就開始動手操作,不能完全達(dá)到本題操作的目的。在教學(xué)求公因數(shù)方法的時候,我也讓學(xué)生與公倍數(shù)求法進(jìn)行了比較,通過比較學(xué)生發(fā)現(xiàn)了公倍數(shù)是無限的,沒有給定范圍時要寫省略號,而公因數(shù)是有限個的`,要寫好句號,表示書寫完成;還發(fā)現(xiàn)找公倍數(shù)時是找最小公倍數(shù),而找公因數(shù)是最大公因數(shù);還發(fā)現(xiàn)求公因數(shù)的方法中是先找小數(shù)的因數(shù)再從其中找大數(shù)的因數(shù),而求公倍數(shù)卻是利用大數(shù)翻倍法,找出來的是大數(shù)的倍數(shù),再從其中找出小數(shù)的倍數(shù)。不僅兩個例題的教學(xué)過程相似,連練習(xí)的設(shè)計也是相似的,所以學(xué)生在完成練習(xí)的時候,已經(jīng)對練習(xí)的形式較為熟悉,練習(xí)完成的較好。正因為兩節(jié)課太相似,所以小部分學(xué)生已經(jīng)有些混淆了,分不清怎么求公倍數(shù),怎么求公因數(shù),這個是在以后教學(xué)中要避免的。

  這節(jié)課的作業(yè)也能反映一些本節(jié)課上的問題,在教學(xué)公倍數(shù)的時候,我沒有強調(diào)集合中元素的互異性,作業(yè)中不少學(xué)生在公倍數(shù)一欄填寫的數(shù)字,同時出現(xiàn)在左右部分的集合中,在這節(jié)課練習(xí)時,我特意強調(diào)了這一點,希望學(xué)生們能記住,在完成練習(xí)五的時候還發(fā)現(xiàn),部分學(xué)生對于2、3、的倍數(shù)的特征記得不清楚了,所以在判斷是不是它們的倍數(shù)的時候還有一些人用大數(shù)去除以2、3、5的方法來判斷,耽誤了很多的時間,這是我上課之前沒有想到的,要是在做這一題之前先讓學(xué)生回憶2、3、5的倍數(shù)的特征,想必他們會節(jié)省更多的時間。

【《最大公因數(shù)》教學(xué)反思】相關(guān)文章:

最大公因數(shù)教學(xué)反思03-06

求最大公因數(shù)教學(xué)反思08-28

《公因數(shù)和最大公因數(shù)》說課稿05-27

最大的“書”教學(xué)反思06-10

《最大的麥穗》教學(xué)反思03-21

最大的書教學(xué)反思03-01

《最大麥穗》教學(xué)反思03-19

最大的書教學(xué)反思15篇03-02

《最大的書》教學(xué)反思(15篇)03-02