爸爸的朋友在线观看,美国毛片免费看,337p日本在线,亚洲女人日B

《解方程二》教學反思

時間:2024-06-30 03:06:55 教學反思 我要投稿

《解方程二》教學反思7篇

  身為一名人民老師,我們的任務之一就是課堂教學,借助教學反思我們可以快速提升自己的教學能力,那么寫教學反思需要注意哪些問題呢?下面是小編收集整理的《解方程二》教學反思,歡迎閱讀,希望大家能夠喜歡。

《解方程二》教學反思7篇

《解方程二》教學反思1

  有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順水推舟,毫不費力。學生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導學生會解形如a-x=b及a÷x=b方程。

  本以為按新課標教材這兩類方程小學階段不用掌握,但在學期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補充講解,且屬于學生必會、考試必考內(nèi)容。原因如下:1、在列方程解決實際問題時,學生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。2、如果教師有意回避,會使學生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。

  基于上述原因,我今天在教學完例2后為學生補充了相應內(nèi)容,但教學效果較差。雖然許多學生能根據(jù)加減乘除各部分之間的關(guān)系推導出X的值,但當要求他們根據(jù)等式的性質(zhì)來解答時,嘗試成功。通過指導,全班也只有50%左右的學生基本掌握解答的方法。分析此次教學失敗的原因可能是安排的時機還不夠成熟。因為學生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學困生聽完拓展練習后,作業(yè)中出現(xiàn)明顯混淆的`現(xiàn)象。如5X=1.5本應根據(jù)等式的性質(zhì)直接將等號兩邊同時除以5求解的,可卻有學生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復雜。

  值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關(guān)系教好呢,還是按等式的性質(zhì)教學好呢?

《解方程二》教學反思2

  有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順水推舟,毫不費力。學生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導學生會解形如a-x=b及a÷x=b方程。

  本以為按新課標教材這兩類方程小學階段不用掌握,但在學期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補充講解,且屬于學生必會、考試必考內(nèi)容。原因如下:

  1、在列方程解決實際問題時,學生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。

  2、如果教師有意回避,會使學生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。

  基于上述原因,我今天在教學完例2后為學生補充了相應內(nèi)容,但教學效果較差。雖然許多學生能根據(jù)加減乘除各部分之間的關(guān)系推導出X的.值,但當要求他們根據(jù)等式的性質(zhì)來解答時,嘗試成功。通過指導,全班也只有50%左右的學生基本掌握解答的方法。分析此次教學失敗的`原因可能是安排的時機還不夠成熟。因為學生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學困生聽完拓展練習后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應根據(jù)等式的性質(zhì)直接將等號兩邊同時除以5求解的,可卻有學生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復雜。

  值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,我覺得按加減乘除法各部分之間的關(guān)系教好呢,而用等式的性質(zhì)教學好比較復雜。

《解方程二》教學反思3

  教材的設(shè)計打破了傳統(tǒng)的教學方法,在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用關(guān)系來求出方程中的未知數(shù),《解方程(二)》教學反思。而北師大版教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。

  原來教學由于我個人比較偏好于傳統(tǒng)的教學方法,在教學的過程中沒有特別強調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學生沒能很好地理解等式的性質(zhì),所以大部分的學生在解方程的時候,還是運用了加、減法各部分間的關(guān)系來計算,只有極個別的學生懂得運用等式的性質(zhì)來解決問題。在這次實驗教學的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的過程是一個等式的恒等變形,教學反思《《解方程(二)》教學反思》。并能站在“學生是學習的主人”和“教師是學習的組織者、引導者與合作者”的這一角度上,為學生創(chuàng)設(shè)學習此課的'情境,提供動手操作、實踐以及小組合作、討論的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。

  盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應從一個一個具體的等式抽象到未知的等式,學生容易接受,而我是直接用抽象的等式驗證的,學生不太容易接受。還有在解方程時,算理講得不太清楚,學生在解方程時,有部分學困生學起來有困難。

  在今后的教學中,一定要吃透教材,認真鉆研教材,才能上出優(yōu)質(zhì)課。

《解方程二》教學反思4

  今天上了解方程(二)的內(nèi)容,感覺沒什么明顯的精彩地方。學生由于有了關(guān)于加減的等式的性質(zhì)的了解,在通過例題中兩組方程的觀察,適當提醒學生聯(lián)系前面學習的等式的性質(zhì),很自然的就能得出有關(guān)乘除的等式的性質(zhì)。

  只是在讓學生舉例的時候,沒有學生能想到同時除以0,結(jié)果是怎樣的。只能由自己向?qū)W生提出問題,簡單討論后,很快想到除法中除數(shù)不能為0,因而得出同時除以一個不為0的數(shù)的'范圍。

  計算中有較多的問題,特別是很多學生對于小數(shù)的乘除法計算,有很多的錯誤,需要加強鞏固訓練。

《解方程二》教學反思5

  今天對五年級上冊《解方程》進行了教學。本課主要對教學例一和例二進行了教學。

  一、本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學重點和難點服務,因此我進行了大膽的嘗試,在講解方程的解時,給學生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學生的好奇心,通過練習讓學生充分感知“方程的解”的神奇之處。既讓學生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學會了本節(jié)課的知識。對于概念的理解也很扎實。

  二、在練習題的安排上也做了精心的安排,當講授完利用天平平衡的道理解方程后,馬上進行了“填空練習”,這四個練習題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的.教學和課后的練習看,學生對解方程掌握的還不錯。

  三、本課主要對解方程進行了解題練習。通過搶奪小紅花等游戲的形式大大提高了學生學習數(shù)學的樂趣和興趣!

  四、通過本課的作業(yè)檢測,有少量學生還是對本課的內(nèi)容練習不是很到位。需要教師在課下不斷的指導。

  五、學生對于方程的書寫格式掌握的很好,這一點很讓人欣喜。

  總之,“興趣是學生最好的老師”,只要緊緊抓住這一點,教學質(zhì)量的提高指日可待。

《解方程二》教學反思6

  本節(jié)主要教學目標是使學生通過結(jié)合具體實際問題的分析與解決,導出形如ax±b=c和ax±bx=c形式的方程,并結(jié)合原有舊知——等式的性質(zhì)推導出解法步驟,同時利用這些方程來解決一些實際問題,豐富學生的解題方法,提高學生解決問題的能力。

  通過幾課時的教學與練習,學生在掌握方程解法上沒有問題,說明學生對等式的性質(zhì)掌握的比較扎實。但在運用方程解決一些實際問題時,部分學生表現(xiàn)出缺少一定的分析習慣和缺乏一定的分析能力,造成在解決問題(特別是一些例題的變式題)時產(chǎn)生較多錯誤。

  通過前后練習的比較、觀察,發(fā)現(xiàn)產(chǎn)生上述問題的主要原因在于學生在練習時偏重模仿和記憶,缺少具體分析的意識。從而造成在碰到一些變式題時就明顯缺少解題策略,學生在讀題后首先想到的不是去思考題中有怎樣的數(shù)量關(guān)系,而是在記憶中極力搜索“這個問題以前有沒有講過?或跟哪個問題是一樣的?”等舊痕跡。然而這些變式題的解答難就難在它與例題有密切的聯(lián)系,但又有區(qū)別。如果學生不能找到其中的區(qū)別和練習,光靠模仿和記憶,那就很難正確解答了。因此,在教學中教師要注意學生重模仿輕分析的學習方式,在練習中要加強數(shù)量關(guān)系的分析,注重學生對解題思路的表述。教師要強調(diào)學生讀題后先分析并寫出等量關(guān)系,每個實際問題的解答過程中都要設(shè)計等量關(guān)系的分析與交流,從潛意識中使學生重視起對問題的分析與判斷。一開始學生可能在分析、判斷等量關(guān)系時還會模仿例題的形式,因此在學生對基本類型有了一定的感悟后,要有針對性的出現(xiàn)變式題讓學生來解決,使其在認知沖突中進一步感悟先分析、判斷等量關(guān)系的重要性。但同時教師也要十分清楚的認識到尋找等量關(guān)系對于課改后的六年級學生來講,并不是一件容易的事,除了缺少一定的'意識外,更重要的是缺乏一定的分析能力。產(chǎn)生這種情況的原因主要有兩個,一是在新教材的編排中,在六年級前很少涉及甚至沒有安排過等量關(guān)系尋找的內(nèi)容。正是由于教材中忽視了這方面內(nèi)容的安排,也就引起了第二個原因——教師和學生都忽視了尋找等量關(guān)系能力的培養(yǎng)。等到六年級要大量具體涉及到時,就發(fā)現(xiàn)學生很不適應了。如何提高學生尋找題目中等量關(guān)系的能力,就成了教學的一個重點,也是一個難點。為了提高學生等量關(guān)系的分析能力,除了如前所述要加強意識培養(yǎng)外,還應在具體方法上加以指導。而用線段圖來表示題目中的條件和問題,是一種非常有效的提升學生分析、判斷等量關(guān)系的方法,教材在例題分析中就先借助了線段圖來分析,從而幫助學生找出題中的等量關(guān)系。在實際教學中我深深地體會到了畫線段圖來表示條件和問題,從而形象的表示出等量關(guān)系的有效性。同時,在教學中不能因為問題簡單或趕進度而忽視畫線段圖表示條件和問題的環(huán)節(jié)。一開始學生可能由于以前缺少一定的訓練而顯得有些不適應,但經(jīng)過幾次的努力后,學生就能很快提高作圖能力,從而有助于等量關(guān)系的尋找。

  綜上所述,在列方程解決實際問題的教學中,教師首先要注意學生學習方式的培養(yǎng),從偏重模仿和記憶中逐步糾正過來,逐步建立具體分析的意識。其次是要培養(yǎng)學生用線段圖表示題目中條件和問題的能力,借助線段圖的表示形象的表現(xiàn)出相關(guān)的等量關(guān)系,提高學生尋找等量關(guān)系的能力,從而進一步提高學生列方程解決實際問題的能力。

《解方程二》教學反思7

  一、認知基礎(chǔ)的“頑固性”

  心理學研究表明,當人們熟練地掌握某種法則以后,往往就很難從另一種角度去思考問題,從而也就不容易順利地實現(xiàn)由“過程”向“對象”的轉(zhuǎn)變。在一至四年級,學生都是根據(jù)四則運算各部分之間的關(guān)系來做計算的,它既是學生十分熟悉的運算規(guī)律,同時又為新知的學習提供了合適的基礎(chǔ)。方程是把已知和未知看作同等的地位,一樣參與運算,從這個角度去看,當然也可以運用四則運算各部分之間的關(guān)系來做。而且,四則運算各部分之間的關(guān)系學生是先入為主、根深蒂固的,具有相對的“頑固性”,甚至在一定程度上會排斥新學的等式的性質(zhì),導致思維的“過早封閉”。因此,大多數(shù)學生這樣做也就可以理解了。

  以前教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學生首先感悟“等式”,比較兩種思路:第一種方法是把未知數(shù)x優(yōu)先從背景中篩選出來,依據(jù)四則運算各部分之間的關(guān)系求出x的值;第二種方法用“結(jié)構(gòu)性觀點”去看待方程,著眼于其所表明的等量關(guān)系,體現(xiàn)了方程思想的本質(zhì),較好地解決了中小學關(guān)于方程解法的銜接問題!稊(shù)學課程標準》也明確要求學生能“理解等式的性質(zhì),會利用等式的性質(zhì)解簡單的方程”。那么,教材編排的價值是不容置疑的,即不能因為學生思維的輕車熟路,而忽視新知的教學,忽視學生數(shù)學思想的進一步提升。利用關(guān)系式這種方法解方程書寫較少,形式簡單,但教學時總碰到差生不理解關(guān)系式也記不住關(guān)系式,因此在解方程時因想不起關(guān)系式而不會解。這幾星期的教學,我發(fā)現(xiàn)孩子們還是比較喜歡學的,學得也不錯,教材利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的.解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的過程是一個等式的恒等變形。教材又通過天平平衡原理過渡到等式的性質(zhì),從而利用等式的性質(zhì)教學解方程,使得解方程變得順理成章、水到渠成。學生深刻認識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。雖然這樣教學學生有興趣,學得不錯,但也存在局限性,如a-x=b和a÷x=b,雖然教材沒有要求解這類方程,但試卷和相應的練習有出現(xiàn),因此,有必要特別利用一些時間給學生補充講解這類方程解法。我發(fā)現(xiàn)用等式性質(zhì)教這類方程,比較麻煩,學生學起來有一定難度。

  二、兩種方法形式上的相似引發(fā)學生思維的惰性

  第一種方法書寫較少,形式簡單。第二種方法從表面看,顯得煩瑣、麻煩,而且方程左邊的“40x÷40”可以直接簡寫成“x”,這樣從表面上看就和第一種方法一樣了。根據(jù)已有的經(jīng)驗已經(jīng)能夠正確地解方程了,何必又多此一舉,再去理解、掌握等式的性質(zhì)呢?學生形成思維惰性,就不會再去深究思路和觀念的不同,更不會創(chuàng)新解法。

  方程變得順理成章、水到渠成。學生深刻認識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。這時,教師再適時介紹教材之所以這樣編排是為了中小學方程解法的銜接,使學生認識到利用等式的性質(zhì)解方程的必要性,觀念得以更新、深化。

【《解方程二》教學反思】相關(guān)文章:

《解方程二》教學反思03-28

解方程二的教學反思02-05

解方程二教學反思10-29

《解方程》的教學反思04-07

《解方程》教學反思03-07

解方程教學反思02-05

《解方程》教學反思范文07-29

數(shù)學解方程教學反思03-12

解方程教學反思15篇02-25