《3的倍數(shù)特征》教學(xué)反思
作為一位優(yōu)秀的老師,我們的工作之一就是教學(xué),寫教學(xué)反思可以快速提升我們的教學(xué)能力,來參考自己需要的教學(xué)反思吧!下面是小編收集整理的《3的倍數(shù)特征》教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
《3的倍數(shù)特征》教學(xué)反思1
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個(gè)位上的數(shù)字之和”去研究。上課開始先讓學(xué)生通過練習(xí)回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來是3,6,9的數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點(diǎn)是非常不錯(cuò)的。
學(xué)生進(jìn)行猜想后,我并沒有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時(shí),我還是沒有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開課本自學(xué),從課本中找3的倍數(shù)的特征,當(dāng)遇到問題解決不了時(shí),我們可以向課本求助。然后問學(xué)生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請(qǐng)結(jié)合舉例說說。”接下來將數(shù)擴(kuò)到百以上,通過各種方式舉正反例通過計(jì)算來驗(yàn)證從而得出3的倍數(shù)的特征。最后比較驗(yàn)證之前的猜想與發(fā)現(xiàn)。當(dāng)我們向課本找到結(jié)論時(shí),我們也要質(zhì)疑,通過舉例來驗(yàn)證。鼓勵(lì)學(xué)生對(duì)知識(shí)要敢于質(zhì)疑,敢于通過各種方式去驗(yàn)證,培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。
在教學(xué)中,我能有效獲取課堂生成資源,同時(shí)也注重方法的指導(dǎo)。比如:同桌舉例驗(yàn)證時(shí),涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時(shí)間,讓后問:還有更加簡(jiǎn)便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機(jī)智與課堂駕馭能力,如:在百數(shù)表圈3的倍數(shù)時(shí),我的課件中有個(gè)數(shù)“99”忘記沒有圈好,學(xué)生發(fā)現(xiàn)了這問題。在這里,我是表揚(yáng)了發(fā)現(xiàn)此問題的學(xué)生,老師故意說:我是特意沒有圈的`,看我們的學(xué)生觀察是否仔細(xì),考慮問題是否全面……,把原本的錯(cuò)誤變成良好的教學(xué)資源。練習(xí)的設(shè)計(jì)業(yè)很有層次與梯度,聯(lián)系生活實(shí)際。
本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗(yàn)證的過程中,學(xué)生的計(jì)算還不夠,學(xué)生親自從算中去體會(huì)更好;總結(jié)不太及時(shí),從及時(shí)總結(jié)中提煉、提升會(huì)更好。
《3的倍數(shù)特征》教學(xué)反思2
“能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個(gè)特點(diǎn):
1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。
本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運(yùn)用特征進(jìn)行正確判斷,同時(shí)十分重視學(xué)生學(xué)習(xí)過程的體驗(yàn)和方法的滲透,讓學(xué)生通過“猜測(cè)——驗(yàn)證——提出新的假設(shè)——驗(yàn)證”的'探索過程來發(fā)現(xiàn)知識(shí),獲得結(jié)論,并感悟方法。
2、理性處理教材,使教學(xué)內(nèi)容生活化。
教科書只是提供了學(xué)生學(xué)習(xí)活動(dòng)的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動(dòng)性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計(jì)例題,通過用“0——9”十個(gè)數(shù)字組成能被整除的三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)藏著豐富的數(shù)學(xué)問題。開課時(shí)收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時(shí)也縮短了教師和學(xué)生的距離,課后“你再長(zhǎng)幾歲,這個(gè)歲數(shù)就能被3整除”這一開放題富有情趣,給學(xué)生留下了深刻的印象。
3、著力改變學(xué)生的學(xué)習(xí)方式。
學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過自主選教學(xué)內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論等合作探究活動(dòng),獲得教學(xué)知識(shí)、感悟方法。如在課的第二階段,設(shè)計(jì)三個(gè)層次的教學(xué)活動(dòng),讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過學(xué)生猜測(cè)、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過計(jì)算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時(shí)也使學(xué)生品嘗了成功的喜悅。
4、合理定位教師角色,營(yíng)造民主、和諧的學(xué)習(xí)氛圍。
課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者?梢詮囊韵聝煞矫婵闯觯阂皇菑膸熒顒(dòng)的時(shí)間分配上,二是從分層探究、有針對(duì)性的適當(dāng)引導(dǎo)上。這節(jié)課從開始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開放的探究方式,
《3的倍數(shù)特征》教學(xué)反思3
1.以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望。教師利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會(huì)將“2、5的.倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。本案例中,學(xué)生很快進(jìn)入問題情境,猜測(cè)、否定、反思、觀察、討論,大部分學(xué)生漸漸進(jìn)入了探究者的角色。
2.以問題為中心組織學(xué)生展開探究活動(dòng)。在上面案例中,教師注意突出學(xué)生的主體地位,教師依據(jù)學(xué)生年齡特征和認(rèn)知水平設(shè)計(jì)具有探索性的問題,引導(dǎo)學(xué)生緊緊圍繞“3的倍數(shù)有什么特征”這個(gè)問題來開展學(xué)習(xí)活動(dòng),指導(dǎo)學(xué)生圍繞問題展開探究活動(dòng),并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結(jié)論,培養(yǎng)了學(xué)生的探索意識(shí)和分析、概括、驗(yàn)證、判斷等能力。
《3的倍數(shù)特征》教學(xué)反思4
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的`數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出3的倍數(shù)特征。
但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個(gè)學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個(gè)學(xué)生的發(fā)現(xiàn),加以理解,鞏固。
這節(jié)課結(jié)束后,我感覺以下方面做得不好。
1、備課不充分。自己在備課時(shí)沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);
2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時(shí),都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。
《3的倍數(shù)特征》教學(xué)反思5
《3的倍數(shù)的特征》是五年級(jí)下冊(cè)數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個(gè)知識(shí)點(diǎn),是在學(xué)生已經(jīng)認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。
因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的'和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個(gè)數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個(gè)數(shù),利用這一結(jié)論來驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識(shí)到:找出某個(gè)規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。
為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時(shí),我還把一些數(shù)各個(gè)數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對(duì)“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時(shí),學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。
利用2、5、3的倍數(shù)的特征來判斷一個(gè)數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。
這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究?jī)?nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動(dòng),獲得了數(shù)學(xué)知識(shí)。學(xué)生的學(xué)習(xí)能動(dòng)性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時(shí)也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。
《3的倍數(shù)特征》教學(xué)反思6
《3 的倍數(shù)的特征》本節(jié)課的教學(xué)活動(dòng),注重學(xué)生實(shí)踐操作,展開探究活動(dòng),組織學(xué)生進(jìn)行交流和探討,注重培養(yǎng)學(xué)生發(fā)現(xiàn)問題,解決問題的能力,讓學(xué)生經(jīng)歷科學(xué)探索的過程,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性。我是從教學(xué)環(huán)節(jié)維度進(jìn)行觀課的,本節(jié)課有五個(gè)環(huán)節(jié)包括:一、復(fù)習(xí)舊知,直接導(dǎo)入。二、自主探究,合作驗(yàn)證。三、總結(jié)提升,共同驗(yàn)證。四、運(yùn)用結(jié)論,鞏固訓(xùn)練。五、全課小結(jié),課后延伸。每個(gè)環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計(jì)合理。下面就說一下自己的想法。
一、以舊帶新,引入新課。
趙老師先復(fù)習(xí)了2、5的倍數(shù)的特征,為這節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。趙老師以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測(cè)、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的'角色。
二、親身經(jīng)歷,探索規(guī)律。
本節(jié)課教師努力嘗試構(gòu)建數(shù)學(xué)生態(tài)課堂,讓學(xué)生繼續(xù)利用小棒擺一擺,進(jìn)而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)。”教師將“動(dòng)手?jǐn)[小棒”升級(jí)為“腦中撥計(jì)數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗(yàn)證,學(xué)生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學(xué)生經(jīng)歷“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”的探究過程,實(shí)現(xiàn)課程、師生、知識(shí)等多層次的互動(dòng)。
三、精心選題,鞏固新知。
習(xí)題的設(shè)計(jì)力爭(zhēng)在突出重點(diǎn),突破難點(diǎn),遵循學(xué)生認(rèn)知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計(jì)了3道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。把數(shù)學(xué)和生活有機(jī)聯(lián)系起來,使學(xué)生體會(huì)到數(shù)學(xué)在現(xiàn)實(shí)生活中作用和價(jià)值,初步學(xué)會(huì)用數(shù)學(xué)的眼光去觀察事物、思考問題,樹立學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的志趣。
四、回顧梳理,舉一反。
在學(xué)生學(xué)習(xí)的過程中注意“學(xué)習(xí)方法”的指導(dǎo),讓學(xué)生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個(gè)環(huán)節(jié)設(shè)計(jì)了讓學(xué)生靜靜的回顧這節(jié)課的學(xué)習(xí)歷程“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”,使其在數(shù)學(xué)思想上做進(jìn)一步的提升。
《3的倍數(shù)特征》教學(xué)反思7
《3的倍數(shù)的特征》的教學(xué)是五下數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中一個(gè)知識(shí)點(diǎn),是在學(xué)生已認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。因而在《3的倍數(shù)的特征》的開始階段我復(fù)習(xí)了2、5的倍數(shù)的特征之后就讓學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2。5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中, 得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。
在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把 3 的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的'倍數(shù)特征 。學(xué)生在經(jīng)歷了猜測(cè)、分析、判斷、驗(yàn)證、概括、等一系列的數(shù)學(xué)活動(dòng)后感悟和理解了3的倍數(shù)的特征,引導(dǎo)學(xué)生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的倍數(shù)。從而,使學(xué)生明確3的倍數(shù)的特征,然后進(jìn)行練習(xí)與拓展。這樣的探究學(xué)習(xí)比我們老師直接教給他們答案要扎實(shí)許多,之后的知識(shí)應(yīng)用學(xué)生就相應(yīng)比較靈活和自如,效果較好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處在最后的拓展練習(xí)上,由于自己事先練習(xí)下水沒有做足,所以誤導(dǎo)了學(xué)生。題目如下:“從3、0、4、5這四個(gè)數(shù)中,選出兩個(gè)數(shù)字組成一個(gè)兩位數(shù),分別滿足以下條件:1、是3的倍數(shù)。2、同時(shí)是2和3的倍數(shù)。3、同時(shí)是3和5的倍數(shù)。4、同時(shí)是2、3和5的倍數(shù)!睂W(xué)生問要寫幾個(gè)時(shí),我回答如果數(shù)量很多至少寫3個(gè)。呵呵,其實(shí)此題不需要如此考慮,因?yàn)樗鼈兊臄?shù)量都有限。
希望以后自己的教學(xué)會(huì)更扎實(shí)起來。
《3的倍數(shù)特征》教學(xué)反思8
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè):“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。
下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動(dòng)手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的.數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性?上г谶@一點(diǎn)上,我很倉(cāng)促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。
整節(jié)課只能說順利地走了下來,對(duì)于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請(qǐng)教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。
《3的倍數(shù)特征》教學(xué)反思9
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的.倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。
一、猜想:讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”。
二、驗(yàn)證::先讓學(xué)生在百數(shù)圖中找找看,顯然像13、16、19等等的數(shù)不是3的倍數(shù),學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。
三、探究:在此基礎(chǔ)上,讓學(xué)生在百數(shù)圖中找出3的倍數(shù)的數(shù),如果把這些3的倍數(shù)的個(gè)位數(shù)字和十位數(shù)字進(jìn)行調(diào)換,它還是3的倍數(shù)嗎?(讓學(xué)生動(dòng)手驗(yàn)證)
12→2115→5118→8124→4227→72
我們發(fā)現(xiàn)調(diào)換位置后還是3的倍數(shù),那3的倍數(shù)有什么奧妙呢?
如果把3的倍數(shù)的各位上的數(shù)相加,它們的和是3的倍數(shù)。
四、驗(yàn)證:下面各數(shù),哪些數(shù)是3的倍數(shù)呢?
2105421612992319876
小結(jié):從上面可知,一個(gè)數(shù)各位上的數(shù)字之和如果是3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。這樣結(jié)論的得出水到渠成。
《3的倍數(shù)特征》教學(xué)反思10
2、3、5倍數(shù)的特征我設(shè)計(jì)的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學(xué)生對(duì)2、5的倍數(shù)的特征不難理解,對(duì)偶數(shù)和奇數(shù)的概念也容易掌握,但我由于對(duì)教材的把握不夠,時(shí)間用到2、5倍數(shù)上的較多。以至于對(duì)3的倍數(shù)特征探究不到位。
好的開始等于成功了一半。課伊始,我設(shè)計(jì)了搶“30”的游戲,目的是讓學(xué)生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個(gè)游戲沒讓學(xué)生部明白要求沒有能提高學(xué)生的興趣。意義不到。數(shù)學(xué)學(xué)習(xí)過程中應(yīng)該是觀察、發(fā)現(xiàn)、驗(yàn)證、結(jié)論等探索性與挑戰(zhàn)性活動(dòng)。首先讓學(xué)生獨(dú)圈出寫出100以內(nèi)2、5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)他們的特征,而這只是猜測(cè),結(jié)論還需要進(jìn)一步的.驗(yàn)證。但我對(duì)這部分的處理太過于復(fù)雜零碎。以至于用的時(shí)間過多。比如說2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的重點(diǎn)。
小組合作,發(fā)揮團(tuán)體的作用,動(dòng)手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學(xué)生的之一能力傾聽能等等還需進(jìn)一步訓(xùn)練。
《3的倍數(shù)特征》教學(xué)反思11
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學(xué)生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè)“個(gè)位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。
下面進(jìn)入驗(yàn)證環(huán)節(jié),先讓學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的`數(shù),通過交流,學(xué)生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進(jìn)入到動(dòng)手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是數(shù)學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。
《3的倍數(shù)特征》教學(xué)反思12
《3的倍數(shù)的特征》是人教版義務(wù)教材新課程第八冊(cè)的教學(xué)內(nèi)容,對(duì)這節(jié)課的教學(xué)設(shè)計(jì),有從2、5的倍數(shù)的特征中引入的、有讓學(xué)生通過擺火柴棒研究的,其中不乏好點(diǎn)子好設(shè)計(jì)。但是,大部分老師都要拋出一個(gè)問題讓學(xué)生思考:“火柴棒的總根數(shù)跟3的倍數(shù)有什么聯(lián)系?”或者干脆問“3的倍數(shù)和數(shù)位上的數(shù)字的和有什么關(guān)系?”總覺得教師對(duì)學(xué)生的引導(dǎo)過于直接,對(duì)于五年級(jí)的學(xué)生,經(jīng)過這樣的提問,一般都能找到3的倍數(shù)的特征,也能用語言來表述。我認(rèn)為,我們的關(guān)鍵不但要讓學(xué)生找到3的倍數(shù)的特征,更應(yīng)該引導(dǎo)學(xué)生怎樣去發(fā)現(xiàn)數(shù)位上的數(shù)字的和與3的倍數(shù)之間的關(guān)系。我考慮,能不能在本節(jié)課中運(yùn)用分類,讓學(xué)生自主探究呢?以下是兩個(gè)教學(xué)片段:
教學(xué)片段一:
讓學(xué)生用30秒時(shí)間,寫3的倍數(shù),大部分學(xué)生都從小到大寫了25個(gè)左右
老師板演了10個(gè):105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務(wù)。
師:請(qǐng)你給自己寫的3的倍數(shù)分類,看看能不能找到規(guī)律。限時(shí)2分鐘。
。ńY(jié)束)學(xué)生回答。
生1:3、6、9;12、15、18、21、24……按位數(shù)分類。(有3人和他一樣分)師:按位數(shù)分類,那么3位數(shù)里哪些是3的倍數(shù)呢:103、208是3的倍數(shù)
嗎?(學(xué)生答不出)
生2:3、6、9、12、15、18、21、24、27、30;
33、36、39、42、45、48、51、54、57、60
63、66……
。ㄓ32人和他一樣)
師:你分類的標(biāo)準(zhǔn)是什么?
生2:個(gè)位是0——9的都?xì)w為一類,共兩類。
生3:共十類。個(gè)位是0的一類,個(gè)位是1的一類,個(gè)位是2的一類,到個(gè)位是9的一類。
師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數(shù),能迅速判斷嗎?(生無語)
師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發(fā)現(xiàn)3的倍數(shù)的特征,是有價(jià)值的呢?(學(xué)生陷入沉思)
以上學(xué)生的分類方法,都有不同的標(biāo)準(zhǔn),從單一分類的角度來看,沒有問題。但是對(duì)于尋求3的倍數(shù)的特征,卻沒有意義。大部分學(xué)生是從2、5的倍數(shù)的特征中受到啟示,這是學(xué)生的經(jīng)驗(yàn),卻是一種負(fù)遷移。課前,我也想到了,那么是不是就一定要先提醒學(xué)生,不要走彎路呢?我認(rèn)為,負(fù)遷移也是一種寶貴的經(jīng)驗(yàn),經(jīng)歷過挫折,對(duì)知識(shí)的理解就會(huì)更加深刻,無需刻意回避。
教學(xué)片段二:
師:繼續(xù)觀察這些數(shù),還有其它分類方法嗎?限時(shí)5分鐘。(陸續(xù)有學(xué)生舉手,5分鐘后,共有15位學(xué)生舉手,巡視一遍。)
師:誰來介紹自己新的分類方法?
生1:3、21、30;
6、15、24、33、42;
9、18、36、45、63;
12、39、48、57;
……
師:你的分類標(biāo)準(zhǔn)是什么?
生1:第一類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是3;第二類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是6;第三類,每個(gè)數(shù)數(shù)位上的.數(shù)字的和是9;第四類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是12;以此類推。
師:誰來幫他“以此類推”?
生2:每個(gè)數(shù)數(shù)位上的數(shù)字的和是15,也是3的倍數(shù);每個(gè)數(shù)數(shù)位上的數(shù)字的和是18,也是3的倍數(shù)。
生3:每個(gè)數(shù)數(shù)位上的數(shù)字的和是21,也是3的倍數(shù);每個(gè)數(shù)數(shù)位上的數(shù)字的和是24,也是3的倍數(shù)。
師:你能用一句話來表達(dá)嗎?
生4:每個(gè)數(shù)位上的數(shù)字的和是3、6、9、12、15、18等,這個(gè)數(shù)就是3的倍數(shù)。
生5:每個(gè)數(shù)位上的數(shù)字的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。
師:很厲害。但是,我們需要驗(yàn)證。判斷老師剛才寫的3的倍數(shù)(前5個(gè))105、111、156、273、300。
生4:1加0加5等于6,6是3的倍數(shù),105也是3的倍數(shù)。
生5:1加1加1等于3,3是3的倍數(shù),111也是3的倍數(shù)。
……
(一個(gè)學(xué)生根據(jù)規(guī)律回答,其他學(xué)生用豎式驗(yàn)證。)
生6:3的倍數(shù)的特征是找到了,但這樣的分類太亂。我一共分3類:
第一類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是3:3、12、21、30;
第二類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是6:6、15、24、42、51;
第三類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是9:9、18、27、36、45……,
這樣的數(shù)是3的倍數(shù)。
師:那老師的這些數(shù):339、504、918、1527、2442屬于哪一類呢?
生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒有超出這三類的。
師:厲害。ㄗ屍渌麑W(xué)生說了兩個(gè)四位數(shù),用他的方法來判斷是不是3的倍數(shù),大概有三十個(gè)左右的學(xué)生能用這樣的方法分析。老師又舉了一個(gè)反例。)
師:誰能用幾句話來概括?
生6:一個(gè)數(shù),每個(gè)數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個(gè)數(shù)就是3的倍數(shù)。
師:真佩服你們!
第二天,有學(xué)生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來,比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說了一個(gè)五位數(shù)20xx,學(xué)生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個(gè)數(shù)就是3的倍數(shù)。
學(xué)生的探究能力如此之強(qiáng),是我沒想到的,學(xué)生快速判斷3的倍數(shù)的方法,實(shí)際上已經(jīng)綜合了很多的知識(shí),盡管不能很明確地用語言來表達(dá),但是,方法是完全正確的,其實(shí)這又是一個(gè)學(xué)生新的探究的開始。
從本節(jié)課中,我有幾點(diǎn)小小的感悟:
一、教師不要害怕學(xué)生探究的失敗。學(xué)生第一次探究的失敗,完全是正常的,這是他們運(yùn)用已有的經(jīng)驗(yàn),進(jìn)行探究后的結(jié)果。盡管這種經(jīng)驗(yàn)的遷移是負(fù)作用的,但是從失敗到成功的過程,記憶是深刻的。負(fù)遷移在教學(xué)中比比皆是,我們不但不能回避,而且要好好利用,要讓學(xué)生積累對(duì)數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),同時(shí)能將“經(jīng)驗(yàn)材料組織化”。
二、教師要給學(xué)生創(chuàng)造探究的機(jī)會(huì)。學(xué)生的探究能力其實(shí)是老師意想不到的。最后一位學(xué)生對(duì)3的倍數(shù)的概括(一個(gè)數(shù),每個(gè)數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個(gè)數(shù)就是3的倍數(shù)。),盡管實(shí)際的意義不是很大,但是它更具有橫向的關(guān)聯(lián),2的倍數(shù)特征是:個(gè)位是0、2、4、6、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個(gè)位是0或5的數(shù)是5的倍數(shù);蛟S,這種類比聯(lián)想更容易讓學(xué)生理解新的知識(shí),更何況是學(xué)生自己探究出來的。其實(shí)很多教學(xué)內(nèi)容我們都可以讓學(xué)生進(jìn)行探究,關(guān)鍵是教師如何給學(xué)生提供一個(gè)探究的載體,一種探究的環(huán)境。
三、教師對(duì)學(xué)過的知識(shí)要經(jīng)常地進(jìn)行整合。新教材的特點(diǎn)是有些知識(shí)點(diǎn)分得比較散,所以教師要經(jīng)常把學(xué)生學(xué)過的知識(shí),在新知中不知不覺地再應(yīng)用,再鞏固。溫故而知新,在復(fù)習(xí)與鞏固中,學(xué)生會(huì)對(duì)舊知有更高的認(rèn)識(shí),更深的理解,也容易排除學(xué)生對(duì)新知的畏難思想。同時(shí)要經(jīng)常地對(duì)各種知識(shí)進(jìn)行串聯(lián),編織學(xué)生知識(shí)的網(wǎng)絡(luò),使學(xué)生認(rèn)識(shí)到各種知識(shí)之間是相互關(guān)聯(lián)相互作用的,以利于學(xué)生解決一些實(shí)際問題或綜合性問題。
四、教師要經(jīng)常在教學(xué)中滲透一些數(shù)學(xué)思想。分類是一種數(shù)學(xué)思想,同時(shí)也是一種數(shù)學(xué)思維的工具。人教版小學(xué)數(shù)學(xué)第一冊(cè)學(xué)生就接觸了分類《整理房間》,第七冊(cè)《角的分類》、第八冊(cè)《三角形的分類》,讓學(xué)生對(duì)分類有了更多的理解。其實(shí)在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級(jí)之間等等。對(duì)于分類的標(biāo)準(zhǔn),分類的原則,學(xué)生在不知不覺中有了感悟。借助分類,有40%的學(xué)生找到了3的倍數(shù)的特征,學(xué)生完全是在觀察、嘗試、驗(yàn)證的基礎(chǔ)上探究的,是自主的行為研究。在小學(xué)數(shù)學(xué)中,滲透了很多數(shù)學(xué)思想,如集合、對(duì)應(yīng)、假設(shè)、比較、類比、轉(zhuǎn)化、分類、統(tǒng)計(jì)思想等,在教學(xué)中合理地運(yùn)用這些數(shù)學(xué)思想,對(duì)學(xué)生學(xué)習(xí)數(shù)學(xué)的影響是深遠(yuǎn)的,也會(huì)讓我們的數(shù)學(xué)探究活動(dòng)更有意義,更有價(jià)值。
《3的倍數(shù)特征》教學(xué)反思13
《3的倍數(shù)的特征》的教學(xué)是五年級(jí)數(shù)學(xué)上冊(cè)第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識(shí)點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識(shí)進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識(shí)間的`矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
2、經(jīng)歷過程,授之以漁
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會(huì)本節(jié)課知識(shí),更掌握了科學(xué)的探究方法。
3、追求本真,知其所以然
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對(duì)學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
《3的倍數(shù)特征》教學(xué)反思14
站在跳板上學(xué)習(xí)數(shù)學(xué)——3的倍數(shù)的特征教學(xué)反思
《3的倍數(shù)的特征》看似一節(jié)知識(shí)簡(jiǎn)單的課,但從教學(xué)實(shí)際來看,是我想得過于簡(jiǎn)單了,教師注重的不應(yīng)該僅僅是對(duì)知識(shí)的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展 。
“3的倍數(shù)的特征”屬于數(shù)論的范疇,離學(xué)生的生活較遠(yuǎn),有一定的難度。而2、5的倍數(shù)的特征是學(xué)生學(xué)習(xí)這一課的基礎(chǔ)。所以,在教學(xué)“3的倍數(shù)的特征”時(shí),我首先以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會(huì)將“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測(cè)、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。但針對(duì)這樣的環(huán)節(jié),也有老師提出反對(duì)意見,他們認(rèn)為教師在教學(xué)中不僅要注重知識(shí)的正遷移,還要防止負(fù)遷移的產(chǎn)生,要能正確地預(yù)見學(xué)生學(xué)習(xí)中可能出現(xiàn)的錯(cuò)誤,采取適當(dāng)措施,防患于未然,達(dá)到所謂“防微杜漸”的目的;他們滿足于學(xué)生的一路凱歌,陶醉于學(xué)生的盡善盡美,視學(xué)生的差錯(cuò)為洪水猛獸。但是課堂就是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動(dòng)的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。正式因?yàn)槿绱耍覀兊?新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會(huì)出現(xiàn)各種各樣的錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識(shí)地去避免學(xué)生犯錯(cuò)誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會(huì)和權(quán)利。
其次,看一個(gè)數(shù)是不是2、5的倍數(shù),只需看這個(gè)數(shù)的個(gè)位。個(gè)位是0、2、4、6、8的數(shù)就是2的倍數(shù),個(gè)位是0、5的數(shù)就是5的倍數(shù)。而3的倍數(shù)特征則不然,一個(gè)數(shù)是不是3的倍數(shù),不能只看個(gè)位,而要看它所有所有數(shù)位上的數(shù)的和是不是3的倍數(shù)。在教學(xué)中,我和大多數(shù)的教師一樣,更多的是關(guān)注兩者的不同,注重讓學(xué)生對(duì)兩種特征進(jìn)行區(qū)分,因此,教學(xué)中往往刻意對(duì)比強(qiáng)化,凸顯這種差異。但這樣的處理很明顯在數(shù)論的角度上割裂了兩者的共同點(diǎn)。實(shí)際上教師在引導(dǎo)學(xué)生發(fā)現(xiàn)3的倍數(shù)的獨(dú)特特征的同時(shí),也應(yīng)該注意引導(dǎo)學(xué)生歸納2、3、5倍數(shù)特征的共同點(diǎn)。別小看這寥寥數(shù)言的引導(dǎo),實(shí)質(zhì)它蘊(yùn)藏著深意。因?yàn)閺臄?shù)論角度講一個(gè)數(shù)能否被2、3、5乃至被其它數(shù)整除,其研究的理論基礎(chǔ)是一樣的:即如果各個(gè)數(shù)位上的數(shù)被某數(shù)除,所得的余數(shù)的和能夠被某數(shù)整除,那么這個(gè)數(shù)也一定能被某數(shù)整除。當(dāng)然,小學(xué)生由于知識(shí)和思維特點(diǎn)的限制,還不可能從數(shù)論的高度去建構(gòu)與理解。但是,這并不意味著教師不可以作相應(yīng)的滲透。事實(shí)上,正是由于有了教師看似無心實(shí)則有意的點(diǎn)撥:“其實(shí)3的倍數(shù)特征與2、5的倍數(shù)特征其實(shí)有一點(diǎn)還是很像的,不知同學(xué)們注意到?jīng)]有?”學(xué)生才可能從2、3、5倍數(shù)特征孤立、割裂、甚至是相互對(duì)立的表象中跳離出來,朦朧地感受到這三者之間的聯(lián)系:2、3、5倍數(shù)特征可以看作是一樣的,都是看它是不是誰的倍數(shù),只不過判斷一個(gè)數(shù)是不是2、5的倍數(shù),只需看這個(gè)數(shù)的個(gè)位是不是2、5的倍數(shù),而判斷一個(gè)數(shù)是不是3的倍數(shù)就要看它所有數(shù)位的和是不是3的倍數(shù)。
《3的倍數(shù)特征》教學(xué)反思15
今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個(gè)不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點(diǎn)?學(xué)生一時(shí)很難發(fā)現(xiàn),仍從個(gè)位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時(shí)我心里有點(diǎn)擔(dān)心怎么看不來呢?,我啟發(fā)學(xué)生再看看個(gè)位和十位上的數(shù),通過交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個(gè)數(shù)的.數(shù)字加起來的和除以3都是正好除的,我讓學(xué)生用這個(gè)發(fā)現(xiàn)對(duì)書上第76頁的表格100以內(nèi)的數(shù)進(jìn)行驗(yàn)證一下,學(xué)生驗(yàn)證后我又讓學(xué)生從100以外的數(shù)來驗(yàn)證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時(shí)學(xué)生思考時(shí)就不會(huì)漏寫了。最后,通過后面的練習(xí),我覺得在教學(xué)某些知識(shí)時(shí),最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實(shí)踐中自己得出結(jié)論,才能牢固地掌握知識(shí)。
【《3的倍數(shù)特征》教學(xué)反思】相關(guān)文章:
倍數(shù)的特征教學(xué)反思04-21
《3的倍數(shù)的特征》教學(xué)反思 15篇04-11
《3的倍數(shù)的特征》教案02-27
《3的倍數(shù)的特征》教案07-01