數(shù)學分數(shù)除法的教學反思
身為一名人民教師,我們要在課堂教學中快速成長,寫教學反思能總結我們的教學經驗,教學反思應該怎么寫才好呢?下面是小編整理的數(shù)學分數(shù)除法的教學反思,僅供參考,歡迎大家閱讀。
數(shù)學分數(shù)除法的教學反思1
分數(shù)除法應用題,歷來都是教學中的難點。要突破這個難點,讓學生透徹理解這類型的應用題,就要抓住乘除法之間的內在聯(lián)系,通過運用轉化、對比,使學生了解這類分數(shù)應用題特征,再借助線段圖,分析題中的數(shù)量關系,找出解題規(guī)律。我主要從以下幾個方面入手:
一、走進生活,體驗生活中的數(shù)學
本來人體的機體構造對于小學生來說是一個很有趣的問題。教學一開始我把人體的`彩圖展現(xiàn)在學生面前,使學生感到數(shù)學就在自己的身邊,在生活中學數(shù)學,讓學生學習有價值的數(shù)學。使學生從中了解到更多有關人體構造的知識,增加了學生的知識面。
二、使學生在學習過程中真正成為學習的主人
教學中,為讓學生認識解答分數(shù)除法應用題的關鍵是什么,我故意用乘法應用題與例題作比較,讓學生從中發(fā)現(xiàn)與乘法應用題的區(qū)別。學生通過交流對比,親自感受它們的異同,找出它們的內在聯(lián)系與區(qū)別,親身感受應用題中數(shù)量之間的關系,然后想方設法讓學生在學習過程中發(fā)現(xiàn)規(guī)律。從而讓學生真切地體會并歸納出:解答分數(shù)除法應用題的關鍵也是從題目的關鍵句找出數(shù)量之間的相等關系,再列出方程。
三、方法多樣化,開拓學生的思維能力
在解答應用題的時候,我鼓勵學生盡可能地找出多種方法,讓學生從多角度去考慮,這樣做可以拓展學生思維,引導學生懂得多角度分析問題,解決問題。充分讓學生親身體驗,讓學生在探究中加深對分數(shù)除法應用題數(shù)量關系及解法的理解,提高能力,為學生進入深層次的學習做好充分的準備。
數(shù)學分數(shù)除法的教學反思2
《新課標》指出:學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者和合作者。在教學中只有確立了學生的主體地位,優(yōu)化學習過程,才能促使學生的自主學習過程。分數(shù)除法簡單應用題教學是整個小學階段應用題教學的重、難點之一,如何激發(fā)學生主動積極地參與學習的全過程,力戒傳統(tǒng)教學中煩瑣的分析和教條的死記,引導學生正確理解分數(shù)除法應用題的數(shù)量。我作了以下的一些教學嘗試:
一、從生活入手學數(shù)學。
一開始,我就改變由復習舊知引入新知的傳統(tǒng)做法,直接取材于學生的生活實際,通過班級的人數(shù)引出題目,再讓學生介紹本班的情況,引發(fā)學生參與的積極性,使學生感到數(shù)學就在自已的身邊,在生活中學數(shù)學,讓學生學習有價值的數(shù)學。
二、關注過程,讓學生獲得親身體驗。
為讓學生認識解答分數(shù)乘法應用題的關鍵是什么時,我故意不作任何說明,通過省略題中的一個已知條件,讓學生發(fā)現(xiàn)問題,親自感受應用題中數(shù)量之間的聯(lián)系,想方設法讓學生在學習過程中發(fā)現(xiàn)規(guī)律。從而讓學生真切地體會并歸納出:解答分數(shù)乘法應用題的關鍵是從題目的關鍵句找出數(shù)量之間的相等關系。
在教學中努力體現(xiàn)“自主、合作、探究”的學習方式。以往分數(shù)除法應用題教學效率并不高,究其原因,主要是教師教學存在偏差。教師喜歡重關鍵詞語瑣碎地分析,喜歡用嚴密的語言進行嚴謹?shù)?邏輯推理,雖分析得頭頭是道,但容易走兩個極端,或者把學生本來已經理解的地方,仍做不必要的分析;或者把學生當作學者,對本來不可理解的,仍做深入的、細碎的剖析,這樣就浪費了寶貴的課堂時間。教學中我把分數(shù)除法應用題與引入的分數(shù)乘法應用題結合起來教學,讓學生通過討論交流對比,親自感受它們之間的異同,挖掘它們之間的內在聯(lián)系與區(qū)別,從而增強學生分析問題、解決問題的能力,省去了許多煩瑣的分析和講解。
三、多角度分析問題,提高能力。
在計算應用題的時候,我通過鼓勵學生對同一個問題積極尋求多種不同的解法,拓展學生思維,引導學生學會多角度分析問題,從而在解決問題的過程中培養(yǎng)學生的探究能力和創(chuàng)新精神。另外,改變以往只從例題中草草抽象概括數(shù)量關系,而讓學生死記硬背,如“是、占、比、相當于后面就是單位1”;“知1求幾用乘法,知幾求1用除法”等等的做法,充分讓學生親身實踐體驗,讓學生在探究中加深對這類應用題數(shù)量關系及解法的理解,提高能力,為學生進入更深層次的學習做好充分的準備。
在整個教學過程中,我是以學生學習的組織者,幫助者,促進者出現(xiàn)在他們的面前。這樣不僅充分發(fā)揮學生的自主潛能,培養(yǎng)學生的探索能力,而且激發(fā)學生的學習興趣。學生學的輕松,教師教的快樂。
數(shù)學分數(shù)除法的教學反思3
分數(shù)除法簡單應用題教學是整個小學階段應用題教學的重、難點之一,如何激發(fā)學生主動積極地參與學習的全過程,引導學生正確理解分數(shù)除法應用題的數(shù)量關系。
一、從生活入手進行教學。
數(shù)學來源于生活,教學要從學生的生活經驗和已有的知識背景出發(fā),給他們提供充分的從事數(shù)學活動和交流的機會。在本課教學的一開始,我就改變由復習舊知引入新知的傳統(tǒng)做法,直接取材于學生的生活實際,通過班級的人數(shù)引出題目:六年級男生人數(shù)是全班人數(shù)的二分之一,男生有27人,六年級有多少人?讓學生簡單計算。然后再讓學生介紹本班的情況,自編類似的應用題,交給另一部分同學解答,引發(fā)學生參與教學的積極性,使學生感受到數(shù)學就在自已的身邊。在生活中學習數(shù)學,其樂無窮!
二、關注過程,讓學生獲得親身體驗。
教學中,為讓學生認識解答分數(shù)除法應用題的關鍵是什么時,我故意不作任何說明,通過省略題中的一個已知條件,讓學生發(fā)現(xiàn)問題,親自感受應用題中數(shù)量之間的聯(lián)系,想方設法讓學生在學習過程中發(fā)現(xiàn)規(guī)律。從而讓學生真切地體會并歸納出:解答分數(shù)除法應用題的關鍵是從題目的關鍵句找出數(shù)量之間的相等關系。
我在教學中努力體現(xiàn)自主、合作、探究的學習方式。以往分數(shù)除法應用題教學效率并不高,究其原因,主要是教師在教學中存在偏差。教師往往喜歡重關鍵詞語瑣碎地分析,喜歡用嚴密的語言進行嚴謹?shù)倪壿嬐评,雖分析得頭頭是道,但容易走兩個極端;或者把學生本來已經理解的地方,仍做不必要的分析;或者把學生當作學者,對本來不可理解的部分,無為地做深入的、細碎的剖析,這樣既浪費了寶貴的課堂時間,又起不到好的效果。教學中我把分數(shù)除法應用題與分數(shù)乘法應用題結合起來進行教學,讓學生通過討論、交流、對比,親自感受它們之間的異同,挖掘它們之間的內在聯(lián)系與區(qū)別,從而增強學生分析問題、解決問題的能力,省去了許多煩瑣的分析和講解。教師在教學中準確把握自己的地位。教師真正把自己當成了學生學習的幫助者、激勵者和課堂生活的導演,凸顯了學生的'主體地位,體現(xiàn)了生本主義的教育思想。
三、多角度分析問題,提高能力。
在計算應用題的時候,我通過鼓勵學生對同一個問題積極尋求多種不同的解法,拓展學生思維,引導學生學會多角度分析問題,從而在解決問題的過程中培養(yǎng)學生的探究能力和創(chuàng)新精神。另外,改變以往只從例題中草草抽象概括數(shù)量關系,而讓學生死記硬背,如是、占、比、相當于后面就是單位1;知1求幾用乘法,知幾求1用除法等等的做法,充分讓學生親身實踐體驗,讓學生在探究中加深對這類應用題數(shù)量關系及解法的理解,提高能力,為學生進入更深層次的學習做好充分的準備。
教學中存在的不足之處在于,啟發(fā)不夠到位。教學過程中學生時有答非所問和不知怎樣答的情況,如歸納本節(jié)課中的應用題特點時,由于沒有引導學生分析數(shù)量。
數(shù)學分數(shù)除法的教學反思4
今天的教學與分數(shù)意義的學習在孩子們頭腦中產生了強烈的矛盾沖突。前幾天的分數(shù)都表示誰占誰的幾分之幾(即分率),可今天求的卻是具體數(shù)量。特別是例2,雖然運用學具讓所有學生參與到知識的探索過程中,但仍舊感覺推進艱難。學生困惑點主要在以下兩方面:
1、為什么把3塊月餅看作單位“1”,平均分成4份,取其中1份不是1/4?
2、通過操作,結果明明是將單位“1”平均分成12塊,取出其中的3塊,為什么不能用3/12塊表示呢?
針對上述兩個問題,我在教學中主要采取了以下一些策略:
1、復習環(huán)節(jié)巧鋪墊。
在復習導入中增加一道用分數(shù)表示陰影部分的練習。其中一幅圖是圓的3/4,另一幅圖是圓的'3/12。這樣,當學生困惑于例題3/4塊和3/12塊結果時,就能通過直觀圖,前后呼應,使學生豁然開朗。
2、審題過程藏玄機。
在教學例2請學生讀題后,首先請學生思考“3塊月餅4人平均分,每人能得到一整塊月餅嗎?”然后用語言暗示“每人分不到一塊月餅,那到底能分得一塊月餅的幾分之幾呢?請同學們用圓形紙片代替月餅,實際動手分一分,看看分得多少塊?”有了每人分不到一塊月餅的提示,又有了“到底能分得一塊月餅的幾分之幾”的暗示,學生探索的落腳點定位到了以一塊月餅為單位“1”,且初步理解了問題是求數(shù)量“塊”而非部分與整體之間的關系。
通過上述改進措施,學生理解3/4相對容易一些。
數(shù)學分數(shù)除法的教學反思5
觀察是學生常用的一種學習方法。如在本課得出被除數(shù)÷除數(shù)=被除數(shù) / 除數(shù)時,我有意識的提出質疑:在分數(shù)與除法的關系中,有什么問題要問?學生有的自學了課本,有的依據(jù)課前或平時積累的經驗,提出:(1)分母能不能為0?(2)用字母如何表示它們的關系?(3)分數(shù)是不是就是除法?在這一過程中,學生提出問題指向明確,突出了課堂進一步發(fā)展的需要,并在觀察發(fā)現(xiàn)中答達成問題的解決。有的學生認為分母不能為0,因為分母相當于除數(shù)。個別同學認為分子也不能為0,但遭到同伴的反駁,澄清了分子可為0的理由。用字母表示分數(shù)與除法的關系,當教師提出用a表示被除數(shù),b表示除數(shù)時,學生很輕松就用a/b表示出來;在探究“分數(shù)是不是就是除數(shù)”,學生的'爭辯非常激烈,點燃了課堂學習的熱情,有學生認為從被除數(shù)÷除數(shù)=被除數(shù) / 除數(shù)的關系中,非常明確說明分數(shù)就是除數(shù),不然怎么用“等于”;有學生從教師提出:“我們學過了哪些數(shù)”中得到啟發(fā),認為分數(shù)是一個數(shù),而除法是一道計算的式子,反對上面學生的意見,得出分數(shù)不等于除法;有人認為意義也不同,分數(shù)表示把單位“1”平均分成若干份,表示其中的一份或幾份叫做分數(shù),而除法表示把一個數(shù)平均分成幾份,每份是多少??通過爭辯,明確分數(shù)和除法的各自意義,提示了“分數(shù)相當于除法”的生成目標,體驗了成功所帶來的信心和力量,實現(xiàn)了以人發(fā)展為本的教學理念。
“數(shù)學教學要從學生的生活經驗和已有的知識背景出發(fā),使學生感到數(shù)學就在自已的身邊,在生活中學數(shù)學。使學生認識學習數(shù)學的重要性,提高學習數(shù)學的興趣”.分數(shù)與除法,對于小學生來說,是一個比較抽象的內容。而在小學階段數(shù)學知識之所以能被學生理解和掌握,絕不僅僅是知識演繹的結果,而是具體的模型、圖形、情景等知識相互作用的結果。所以我在設計《分數(shù)與除法》這一課時,從以下兩方面考慮:
一、以解決問題入手,感受分數(shù)的價值。
從分餅的問題開始引入,讓學生在解決問題的過程中,感受當商不能用整數(shù)表示時,可以用分數(shù)來表示商。本課主要從兩個層面展開,一是借助學生原有的知識,用分數(shù)的意義來解決把1個餅平均分成若干份,商用分數(shù)來表示;二是借助實物操作,理解幾個餅平均分成若干份,也可以用分數(shù)來表示商。而這兩個層面展開,均從問題解決的角度來設計的。
二、分數(shù)意義的拓展與除法之間關系的理解同步。
當用分數(shù)表示整數(shù)除法的商時,用除數(shù)作分母,用被除數(shù)作分子。反過來,一個分數(shù)也可以看作兩個數(shù)相除?梢岳斫鉃榘选1”平均分成4份,表示這樣的3份;也可以理解為把“3”平均分成4份,表示這樣的1份。也就是說,分數(shù)與除法之間的關系的理解、建立過程,實質上是與分數(shù)的意義的拓展同步的。
教學之后,再來反思自己的教學,發(fā)現(xiàn)就小學階段的數(shù)學知識存儲于學生腦海里的狀態(tài)而言,除了抽象性的之外,應當是抽象與具體可以轉換的數(shù)學知識。
數(shù)學分數(shù)除法的教學反思6
分數(shù)除法教學是整個小學階段應用題教學的重、難點之一。一個數(shù)除以分數(shù)是在一個數(shù)除以整數(shù)的基礎上,繼續(xù)學習一個數(shù)除以分數(shù)的方法。如何推導分數(shù)除法的計算方法,有多種方法。例如:利用商不變規(guī)律進行推導;利用等式的基本性質進行推導;利用逆運算關系和分數(shù)的基本性質進行推導;聯(lián)系實際問題分析、推導等。
而教材選用的是最后一種,意在結合具體的情景,通過線段圖的'分析,讓學生明白算理。而在以前的教學中,我習慣讓學生通過大量的例子歸納方法,讓學生經歷從特殊到一般的歸納過程。所以,在第一次教學時我先讓學生計算兩組比較簡單的算式,并且引導學生對算式進行觀察、比較和分析,讓學生通過猜想——嘗試——驗證,發(fā)現(xiàn)一個數(shù)除以分數(shù)和乘這個分數(shù)的倒數(shù)的結果都相等。然后進行練習,學生學習效果也不錯,教學過程一切自然流暢。
清晰地記得去年教學此內容時,下課后,一個學生問我:“老師,一個數(shù)除以分數(shù)為什么要乘這個分數(shù)的倒數(shù)呢?”這句話引起了我的反思。是!一個數(shù)除以分數(shù)的算理還沒有講清楚呢?因為一直以來都是這樣教學,只是通過猜想、嘗試、驗證、歸納一個數(shù)除以分數(shù)和乘這個分數(shù)的倒數(shù)的結果相等,也就把計算法則作為一個規(guī)定硬性地塞給了孩子,而忽視了算理的教學,這種學生只知其然而不知其所以然。翻閱教材,發(fā)現(xiàn)教材是通過畫線段圖讓學生來明白算理,注重的算理的教學,忽視猜想、嘗試、驗證、歸納這種數(shù)學思想的滲透。如何讓兩者有機的結合起來呢?既能讓學生明白算理又讓學生滲透這種數(shù)學方法呢?
經過仔細反思之后,今年我在教學此內容時,調整了我的教學過程。我在學生猜想、嘗試、驗證、歸納出一個數(shù)除以分數(shù)等于乘這個分數(shù)的倒數(shù)的結果后,我拋出了這個問題:一個數(shù)除以分數(shù)為什么要乘以這個數(shù)的倒數(shù)呢?學生思考,討論。匯報時學生開始大部分圍繞因為結果相等來總結。此時我再結合線段圖對學生進行算理的教學,大部分同學們恍然大悟,都露出了燦爛的笑容。孩子們高興地說分數(shù)除法的算理也恰恰證明了我們猜想是正確的。
從這節(jié)課,使我感悟到,計算教學,最省事的教法就是把計算方法和盤托出,直接告訴學生,然后進行大量的訓練?墒沁@樣教學,盡管也能讓學生熟練掌握算法,但學生只知其然,不知其所以然。為了培養(yǎng)學生的學習能力和探究能力,促進學生的發(fā)展,我們應該舍得花時間讓學生經歷計算方法的探索過程。這也是課程改革理念在計算教學中的具體體現(xiàn)。
數(shù)學分數(shù)除法的教學反思7
《分數(shù)除法三》是北師大版小學數(shù)學第十冊第三單元的內容。分數(shù)應用題的教學是小學數(shù)學教學中的一個重點,也是一個難點。如何激發(fā)學生主動積極地參與學習的全過程呢?教學時,我沒有采用書上的情境,而是從學生的生活實際引入。《國家數(shù)學課程標準》指出:“數(shù)學教學要從學生的生活經驗和已有的知識背景出發(fā),向他們提供充分的從事數(shù)學活動和交流的機會!苯虒W一開始我就結合學生的生活實際提出相關的數(shù)學問題,例如:我們班有多少女生?有多少男生?女生占全班人數(shù)的幾分之幾?現(xiàn)在知道“全班人數(shù)”和“女生占全班人數(shù)的幾分之幾”求女生有多少人,怎樣求?學生很快就知道列出乘法算式解決。反過來,知道“女生人數(shù)”和“女生占全班人數(shù)的幾分之幾”求全班人數(shù)呢?這樣引發(fā)學生參與的積極性,使學生感到數(shù)學就在自已的身邊,在生活中學數(shù)學,讓學生學習有價值的數(shù)學。
讓學生理解題中的數(shù)量關系是解決分數(shù)除法應用題的關鍵。教學中,我通過省略題中的一個已知條件,讓學生發(fā)現(xiàn)問題,親自感受應用題中數(shù)量之間的聯(lián)系,想方設法讓學生在學習過程中發(fā)現(xiàn)規(guī)律,從而讓學生體會并歸納出:解答分數(shù)除法應用題的關鍵是從題目的關鍵句找出數(shù)量之間的相等關系。本課重點是要讓學生學會用方程的方法解決有關的分數(shù)問題,體會用方程解決實際問題的重要模型。為了幫助學生理解,我借助線段圖的直觀功能,引導孩子們理清解題思路,找出數(shù)量間的相等關系。
在學生學會分析數(shù)量關系后,我把分數(shù)除法應用題與分數(shù)乘法應用題結合起來教學,讓學生通過討論交流對比,感受它們之間的異同,挖掘它們之間的內在聯(lián)系與區(qū)別,從而增強學生分析問題、解決問題的能力。在學生掌握了用方程解決問題的方法后,我又鼓勵他們對同一個問題積極尋求多種不同的'解法,拓展學生思維,引導學生學會多角度分析問題,從而在解決問題的過程中培養(yǎng)學生的探究能力和創(chuàng)新精神。教學中,給學生提供探究的平臺,先讓學生獨立思考,探究解題方法,在獨立探究的基礎上,再讓學生小組合作討論,探究不同的解題方法。使學生經歷獨立探究、小組探究的過程,使學生對“分數(shù)除法問題”的算法有初步的感悟,對這類應用題數(shù)量關系及解法有清晰的理解,為進入更深層次的學習做好充分的準備。
數(shù)學分數(shù)除法的教學反思8
六年級上學期數(shù)學第二單元是“分數(shù)除法”,其中第一小節(jié)是:“分數(shù)除法的意義和計算法則”。在教學上,“分數(shù)除法的意義”好辦,因為有分數(shù)乘法和小數(shù)乘法除法的意義做基礎,在課堂上,只要按課文編排稍做解釋學生就可明白。
對分數(shù)除法計算法則,我對課文編排講解內容作了一下變動。這一小節(jié)有3道例題,分別講“分數(shù)除以整數(shù)” 、“整數(shù)除以分數(shù)” 、 “分數(shù)除以分數(shù)”。分數(shù)除法的計算法則如何得來,如何向學生講得明白,一直是老師們所苦惱的問題。不講嘛,似乎是沒有完成教學任務,講吧,即使是老師認為自己講得很明白,其實學生真正理解嗎?我認為,學分數(shù)除法的關鍵是記牢、熟練運用“計算法則”,至于這計算法則是如何得來的,可暫時忽略。我把這3道例題分為兩節(jié)課講解。第一課時講“分數(shù)除以整數(shù)”,通過例1,“把6/7米鐵絲平均分成2段,每段長多少米?”使學生明白,把一個數(shù)平均分成2份,既可以用除法“÷2”表示,也可以用乘法“×1/2”表示,也就是說“÷2”=“×1/2”,進而,把一個數(shù)平均分成3、4、5……,既可以用÷3、÷4、÷5……表示,也可以用×1/3、1/4、1/5……表示,而1/2是2的倒數(shù)、1/3是3的倒數(shù)……,從而得出“除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)”。在和學生學習過程中,盡管我用的是課本例1的教學素材,但在教學過程中,我一直有意忽略被除數(shù)和除數(shù)到底是分數(shù)還是整數(shù)的問題,只是強調被除數(shù)除以除數(shù)等于乘除數(shù)的倒數(shù)。教學完例1,就讓學生做相應的練習(強化“除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)”的概念)第二課時,同學生學習例2、例3。課文中例2“一輛車2/5小時行駛18千米,1小時行駛多少千米?”,是詳細地講解了為什么18÷2/5最后可以表達為18×2/5,而我只是根據(jù)題意列出18÷2/5后,讓學生回想例1的學習過程和分數(shù)除法計算法則,讓學生自己說出18÷2/5=18×2/5,然后計算得出結果,而省略了中間的講解過程。接著學習例3“小剛3/10小時走了14/15千米,他1小時走多少千米?”“14/15÷3/10=14/15×3/10”。這兩道例題是應用題(但在教材安排中,沒有把它放在分數(shù)除法應用題范圍內),我沒有把注意力放在計算法則的推倒過程上,反倒是根據(jù)題意為什么這樣列式花了些時間。
3道例題學習完(還包括相當量的練習),用了兩節(jié)課,學生已經掌握了“甲數(shù)除以乙數(shù)(0除外)等于甲數(shù)乘乙數(shù)的倒數(shù)”的分數(shù)除法計算法則。根據(jù)學生情況的'反饋,學生掌握這一小節(jié)的知識是扎實的。
現(xiàn)在我還在想,既然乘法不強調被乘數(shù)與乘數(shù),如,一本書5元,買3本要多少元?既可以5×3,又可以3×5,只要結果是15元就算對,(但我堅持認為5×3和 3×5表達的意義是不一樣的,不過,現(xiàn)行教材認為結果一樣就行)那么,在學生不太明白算理而只掌握計算方法,在教學上應該是允許的。也許我這樣做有點離經叛道,不符合現(xiàn)在的教育教學觀念,但要求一定要讓學生明白所有算理教學才算成功,似有點不太實際。學生(包括成人)很多時候知道要這樣做并且做對了,已經是完成學習任務了,又何必強求一定要“知其所以言”呢?
數(shù)學分數(shù)除法的教學反思9
《分數(shù)除法3》是一步計算的分數(shù)除法應用題。分數(shù)應用題的教學是小學數(shù)學教學中的一個重點,也是一個難點。
為了突破這個難點,教材鼓勵學生用方程解決簡單的分數(shù)除法問題,這節(jié)課的教學重點就是用方程來解決問題。因此教學時,我讓學生認真讀題,從中獲得信息,找出題中的等量關系,讓學生理解并掌握解答分數(shù)除法應用題的關鍵是從題中的.關鍵句找出數(shù)量之間的等量關系,根據(jù)等量關系式,列出方程,用方程來解決這樣的問題,培養(yǎng)學生的方程思想,讓學生在自主探索與合作交流的過程中真正理解和掌握用方程解決分數(shù)問題的思想和方法。
解決問題后引導學生進行檢驗,并對于學生可能出現(xiàn)的不同解法給與肯定,引導學生通過比較、反思,體會用方程解決分數(shù)除法應用題的優(yōu)越性。使學生體會到用方程解決實際問題的重要模式。在練習應用題時,鼓勵學生對同一問題尋求多種不同的方法,引導學生學會多角度的分析問題,培養(yǎng)學生的探究能力。
數(shù)學分數(shù)除法的教學反思10
本節(jié)課是北師大版數(shù)學《分數(shù)除法》中的第三節(jié)課。本節(jié)課旨在借助圖形語言,在操作活動中理解一個數(shù)除以分數(shù)的意義和計算方法。為此,根據(jù)本節(jié)課教材的特點,結合學生已有的個體經驗,本節(jié)課做了如下幾個層次的設計:
第一層次:“分一分”的活動。通過學生動手分餅活動,讓學生經過觀察、比較與思考,發(fā)現(xiàn)整數(shù)除以整數(shù)與整數(shù)除以分數(shù)知識間的內在聯(lián)系,借助圖形語言,初步感知體會“除以一個數(shù)”與“乘這個數(shù)的倒數(shù)”之間的關系。這樣做不僅為學生創(chuàng)設了一個更好理解分數(shù)除法意義的機會,更主要的是教會學生一種學習的方法,即分數(shù)除法的意義可聯(lián)系整數(shù)除法的意義進行學習。最后,通過啟發(fā)性的問話:“觀察這一組算式,你有什么發(fā)現(xiàn)?”激發(fā)學生思考、求知、解答的愿望,為下一步的探究做了很好的鋪墊。
第二層次:“畫一畫”的活動。在第一層次分餅的基礎上分線段,雖然線段圖比圓形圖更抽象,但學生已有分餅的經驗,所以學生根據(jù)問題不難列出算式,怎樣求出結果就成為這一操作活動要解決的問題。其中(1)(2)小題比較容易,學生從圖上可以看出結果,關鍵是第三小題不容易突破,是本節(jié)課教學的.難點。主要是讓學生弄清第(2)小題的算理,再將此方法遷移到地(3)小題。
第三層次:“想一想、填一填”的活動。由于學生有了前面操作的基礎,這部分比較大小的題目,他們不難填出答案。但關鍵是讓學生觀察、比較、分析,從而發(fā)現(xiàn)題目中蘊含的規(guī)律。這一活動是學生對前面問題思考過程的整理,對分數(shù)除法意義進一步的理解。
第四層次:實踐應用活動。是學生應用所學知識解決實際問題,鞏固、內化知識的過程。
數(shù)學分數(shù)除法的教學反思11
“分數(shù)和除法的關系”主要引導學生探索并理解分數(shù)與除法的關系,教材呈現(xiàn)的直觀的情境圖:把3塊餅平均分給4個小朋友,每人分得多少塊?分餅的情境,對于五年級的學生來說相當熟悉,不但生活中有,以前的課本知識中也有,生活、學習的經驗體會到和以前分餅的問題有相同之處,都是用餅分給一些小朋友,每個小朋友可以分得多少個餅的問題,算式是3÷4=?,有直觀的'情境圖幫助學生思考,有學生知道這個算式的結果是3/4塊。借機可以讓全體學生直觀地體會結果不滿1時可以用分數(shù)表示,直觀幫助學生初步體會分數(shù)與除法的關系。五年級數(shù)學下冊分數(shù)和除法教學反思
驗證“3÷4是否是3/4塊,也就是每人分得是3/4塊餅嗎”是這堂課的難點,操作能幫助學生理解。方法一是一個餅一個餅地分,將第一個餅平均分成4份,每個小朋友分得其中的一份,也就是分得1/4個餅,用同樣的方法分別將第二、第三個餅也分,每個小朋友還是分得1/4塊餅,三次一共分得3個1/4塊餅,合起來是3/4塊餅;方法二是三個餅疊在一起分,平均分成4份,每個小朋友分得其中的一份,也就是每人分得3塊的1/4,有3個1/4塊餅,即3/4塊。操作、圖像都是直觀的不同手段和形式,同樣可以幫助學生理解“3/4塊餅”得到的過程,形成豐富、準確的表象。
觀察等式3÷4=3/4、3÷5=3/5可以發(fā)現(xiàn)分數(shù)和除法之間的關系,有了板書的直觀支撐,學生很容易知道被除數(shù)相當于分數(shù)的分子,除數(shù)相當于分數(shù)的分母,除號相當于分數(shù)的分數(shù)線;有了板書的直觀支撐,學生很容易知道除法與分數(shù)的區(qū)別,除法是一種四則運算之一,而分數(shù)是一種數(shù),相對于自然數(shù)、小數(shù)而言的另外一種形式的數(shù)。在理解、掌握分數(shù)與除法關系的基礎上,通過練習讓學生進一步溝通分數(shù)與除法之間的關系,形成相應的技能。如,先將被除數(shù)改寫成分子,后將除數(shù)改寫成分母來的比較簡單,且不容易出錯等等。板書是可以一直留在學生視線中的直觀媒體,便于學生反復觀察、比較,可以幫助學生獲得相應的結論。
情境圖、動手操作、直觀演示、板書這些形式和手段,可以幫助學生直觀地理解知識和運用知識。“試一試”是讓學生把低級單位的單名數(shù)換算成高級單位的單名數(shù),題目:7分米=( )/ ( )米 23分=( )/ ( )。學生交流中有兩種思路,一是運用分數(shù)的意義來解決問題的,把1米看做單位“1”平均分成10份,7分米是這樣的7份,所以7分米=7/ 10米;二是低級單位換算成五年級數(shù)學下冊分數(shù)和除法教學反思高級單位時,用除以進率的方法解決問題,即7÷10=7/10(米)。運用分數(shù)的意義和規(guī)律準確完成單位之間的換算,學生在思考時是離不開直觀的支撐的。直觀是學生理解的基礎,直觀是溝通知識的橋梁。
數(shù)學分數(shù)除法的教學反思12
本課的教學重點和難點是讓學生理解“為什么除以一個分數(shù),等于乘它的倒數(shù)”,否則,會使學生陷入只背結論,不明道理的誤區(qū),這樣的結果或造成學生出錯率高,為了很好的突出重點、突破難點,我創(chuàng)造性地使用了教材,做了如下的設計:
一、動手操作,增加直觀性。
1、拿出自己準備好的圓形的紙,把它平均分成兩份,每份是這張紙的幾分之幾?怎樣計算?結果是多少?學生們通過自己的操作,很快說出了,“1除以2等于二分之一”的正確答案;
2、問:這半張紙,也就是整張紙的二分之一,那么這張紙里有幾個這樣的二分之一呢?怎樣計算?結果是多少?學生們通過觀察和思考,得出了“1除以1/2等于2”的結論。我對學生的`做法進行了肯定和鼓勵。
3、再問:如果把整張紙每1/3一份,又可以分成多少份呢?每四分之一、每五分之一呢?
學生通過親自動手操作,很快得出了“1除以1/3等于3,1除以1/4等于4的正確結論”,到了1除以1/5時,根本不用動手折就得出了正確的結論。而且大部分學生都總結了“1除以幾分之一,就等于幾”規(guī)律?粗鴮W生們興奮的表情,我提出了以下的問題:觀察以上的算式河的書,你發(fā)現(xiàn)了什么?
二、觀察討論,形成規(guī)律
學生們通過觀察,討論終于發(fā)現(xiàn)了“除以一個分數(shù),等于乘它的倒數(shù)”,我又追問:為什么要這樣做?大家通過回憶分數(shù)的意義,也弄明白了其中的道理。
這節(jié)課的學習,學生們大部分掌握了計算方法,但有個別學生在計算時有除號不變的現(xiàn)象。所以,今后應加強這方面的訓練,使學生全部掌握計算方法。在解答方程時也不會出錯,提高計算能力和解題能力。
數(shù)學分數(shù)除法的教學反思13
分數(shù)應用題是六年級下期的內容,它的教學是小學數(shù)學教學中的一個重點,也是一個難點。如何激發(fā)學生主動積極地參與學習的全過程呢?
教學時,我沒有采用書上的情境,而是從學生的生活實際引入。例如:我們班有多少女生?有多少男生?女生占全班人數(shù)的幾分之幾?現(xiàn)在知道“全班人數(shù)”和“女生占全班人數(shù)的幾分之幾”求女生有多少人,怎樣求?學生很快就知道列出乘法算式解決。反過來,知道“女生人數(shù)”和“女生占全班人數(shù)的幾分之幾”求全班人數(shù)呢?這樣引發(fā)學生參與的積極性,使學生感到數(shù)學就在自已的身邊,在生活中學數(shù)學,讓學生學習有價值的數(shù)學。
讓學生理解題中的數(shù)量關系是解決分數(shù)除法應用題的關鍵。教學中,我通過省略題中的一個已知條件,讓學生發(fā)現(xiàn)問題,親自感受應用題中數(shù)量之間的`聯(lián)系,想方設法讓學生在學習過程中發(fā)現(xiàn)規(guī)律,從而讓學生體會并歸納出:解答分數(shù)除法應用題的關鍵是從題目的關鍵句找出數(shù)量之間的相等關系。本課重點是要讓學生學會用方程的方法解決有關的分數(shù)問題,體會用方程解決實際問題的重要模型。為了幫助學生理解,我借助線段圖的直觀功能,引導孩子們理清解題思路,找出數(shù)量間的相等關系。
在學生學會分析數(shù)量關系后,我把分數(shù)除法應用題與分數(shù)乘法應用題結合起來教學,讓學生通過討論交流對比,感受它們之間的異同,挖掘它們之間的內在聯(lián)系與區(qū)別,從而增強學生分析問題、解決問題的能力。
在學生掌握了用方程解決問題的方法后,我又鼓勵他們對同一個問題積極尋求多種不同的解法,拓展學生思維,引導學生學會多角度分析問題,從而在解決問題的過程中培養(yǎng)學生的探究能力和創(chuàng)新精神。教學中,給學生提供探究的平臺,先讓學生獨立思考,探究解題方法,在獨立探究的基礎上,再讓學生小組合作討論,探究不同的解題方法。使學生經歷獨立探究、小組探究的過程,使學生對“分數(shù)除法問題”的算法有初步的感悟,對這類應用題數(shù)量關系及解法有清晰的理解,為進入更深層次的學習做好充分的準備。
數(shù)學分數(shù)除法的教學反思14
《分數(shù)與除法》是在學生學習了分數(shù)的意義基礎上進行教學的,通過這節(jié)課的教學,目的是讓學生在理解了分數(shù)的意義基礎上,從除法的角度去理解分數(shù)的意義,掌握分數(shù)與除法的關系,會用分數(shù)表示兩個數(shù)相除的商。
在講這節(jié)課之前,本來以為是很簡單的一節(jié)課,學生在理解分數(shù)與除法的關系時也一定會很容易,唯一的難點是用除法的.意義理解分數(shù)的意義,我想只要借助實物圓形紙片給學生演示一下,學生就會理解了,但當我講完這節(jié)課后,才發(fā)現(xiàn)我的想法太簡單了,我把學生想象成理想化的學生了,這部分知識雖然有一部分學生理解了,但仍有一部分學生在用除法的意義理解分數(shù)還很困難。在這節(jié)課的教學中,我覺得有以下幾方面值得我去思考:
一,在學生用除法的意義理解分數(shù)的意義時, 能夠借助直觀形象的實物圖,通過動手操作、演示說明等方法,讓學生理解分數(shù)的意義,這對于小學生來說,理解起來比較容易。但由于我在教學時,疏忽了個別理解能力較差的學生,在演示說明的時候,叫的學生少,如果能多叫幾名同學演示說明,再加上教師的及時點撥,我想這部分學生在理解這一難點時,就會比較容易了。
二、學生不是理想化的學生,不要指望他們什么都會,因為學生之間畢竟存在著很大的差異。在教學“把3張餅平均分給4個同學,每個同學應分多少張餅?”時,我讓學生借助圓形紙片在小組內合作進行分割,在學生動手操作時,我才發(fā)現(xiàn)有的同學竟然不知道該怎么分,圓紙片拿在手上束手無策,只是眼巴巴地看著其他的同學分;小組的同學分完后,演示匯報時,有很多同學都知道怎么分,但說的不是很明白。在以后的備課過程中,要充分考慮學生的已有知識水平和心理認知特點。
三、小組的全員參與不夠。在小組合作進行把3張餅平均分給4個人時,有的小組合作的效果較好,但有的小組有個別同學孤立,不能很好的與人合作,我想,學生在動手操作之前,教師如果能讓小組長布置好明確的任務分工,讓每個人都有事可做,小組合作的效果就會更好了。
四、在教學設計環(huán)節(jié)上,學生動手操作的內容過多,使整堂課顯得很羅嗦,練習的時間就相對縮短了。在操作這一環(huán)節(jié)上,我設計了兩次動手操作,都是分餅問題,分餅的目的是讓學生用除法的意義理解分數(shù)的意義,學生分了兩次,但還是有的同學理解的不是很透徹,如果只讓學生分一次,把這一次的操作活動時間延長一些,匯報演示時讓每個類型的學生都有參與展示的機會,我想這樣教師就會有充足的時間在學生匯報展示的時候給予指導,使學生真正理解分數(shù)的意義。
數(shù)學分數(shù)除法的教學反思15
一、教學內容:分數(shù)與除法,教材第65、66頁例1和例2
二、教學目標:1.使學生理解兩個整數(shù)相除的商可以用分數(shù)來表示。
2.使學生掌握分數(shù)與除法的關系。
三、重點難點:1.理解、歸納分數(shù)與除法的關系。
2.用除法的意義理解分數(shù)的意義。
四、教具準備:圓片、多媒體課件。
五、教學過程:
。ㄒ唬⿵土
把6塊餅平均分給2個同學,每人幾塊?板書:6÷2=3(塊)
(二)導入
。2)把1塊餅平均分給2個同學,每人幾塊?板書:1÷2=0.5(塊)
(三)教學實施
1.學習教材第65 頁的例1 。
。1)如果把1塊餅平均分給3個同學,每人又該得到幾塊呢?1÷3=0.3(塊)
。2)1除以3除不盡,結果除了用循環(huán)小數(shù),還可以用什么表示?
通過練習,激活了學生原有的知識經驗,(即兩個數(shù)相除的商有可能是整數(shù))也有可能是小數(shù)。進而提出當1÷3得不到一個有限的小數(shù)時,又該如何表示?這一問題激發(fā)了學生探索的積極性,創(chuàng)設解決問題的情境,研究分數(shù)與除法的關系。
( 3)指名讓學生把思路告訴大家。
就是把1塊餅看成單位“1”,把單位“1”平均分成三份,表示這樣一份的數(shù),可以用分數(shù)來表示,這一份就是塊。
老師根據(jù)學生回答。(板書:1 ÷ 3 =塊)
。4)如果取了其中的兩份,就是拿了多少塊?(塊)怎樣看出來的?
通過這樣的練習,為下面的操作打下基礎。
2.觀察上面三道算式結果得出:兩數(shù)相除,結果不僅可以用整數(shù)、小數(shù)來表示,還可以用分數(shù)來表示。引出課題:分數(shù)與除法
3.學習例2 。
( 1 )如果把3 塊餅平均分給4個同學,每人分得多少塊?(板書:3 ÷ 4)( 2 )3 ÷ 4 的計算結果用分數(shù)表示是多少?請同學們用圓片分一分。
老師:根據(jù)題意,我們可以把什么看作單位“1 " ? (把3 塊餅看作單位“1”。)把它平均分成4 份,每份是多少,你想怎樣分?請同學到投影前演示分的過程。
通過演示發(fā)現(xiàn)學生有兩種分法。
方法一:可以1個1個地分,先把1 塊餅平均分成4 份,得到4 個,3 個餅共得到12個, 平均分給4 個學生。每個學生分得3個,合在一起是塊餅。
方法二:可以把3 塊餅疊在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到塊餅,所以每人分得塊。
討論這兩種分法哪種比較簡單?(相比較而言,方法二比較簡單。)
兩種分法都強調分得了多少塊餅,讓學生初步體會了分數(shù)的另一種含義,即表示具體的數(shù)量。借助學具,深化研究。
( 3 )加深理解。(課件演示)
老師:塊餅表示什么意思:
、侔3塊餅一塊一塊的分,每人每次分得塊,分了3次,共分得了3個塊,就是塊。
、诎3塊餅疊在一塊分,分了一次,每人分得3塊,就是塊。
現(xiàn)在不看單位名稱,再來說說表示什么意思?( 表示把單位“1 “平均分成4 份,表示這樣3 份的數(shù);還可以表示把3 平均分成4份,表示這樣一份的數(shù)。)
( 4 )鞏固理解
、 如果把2塊餅平均分給3個人,每人應該分得多少塊? 2÷3=(塊)
、趧偛糯蠹叶际悄脤W具親自操作的,如果不借助學具,你能想像出5塊餅平均分給8個人,每人分多少塊嗎?(生說數(shù)理)
、蹚膭偛诺难芯糠治觯隳苤苯佑嬎7÷9的結果嗎?()
借助學具分餅、想象分的過程、拋開情境給出除法算式三個環(huán)節(jié)的呈現(xiàn)層次清楚,邏輯性強,為學生概括分數(shù)與除法的關系提供了足夠的操作經驗。
4.歸納分數(shù)與除法的關系。
( l )觀察討論。
請學生觀察1÷3 = (塊)3÷4 =(塊)討論除法和分數(shù)有怎樣的關系?
學生充分討論后,老師引導學生歸納出:可以用分數(shù)表示整數(shù)除法的商,用除數(shù)作分母,被除數(shù)作分子,除號相當于分數(shù)中的分數(shù)線。(課件出示表格)
用文字表示是:被除數(shù)÷除數(shù)=
老師講述:分數(shù)是一種數(shù),除法是一種運算,所以確切地說,分數(shù)的分子相當于除法的被除數(shù),分數(shù)的分母相當于除法的除數(shù)。
( 2 )思考。
在被除數(shù)÷除數(shù)=這個算式中,要注意什么問題?(除數(shù)不能是零,分數(shù)的分母也不能是零。)
( 3 )用字母表示分數(shù)與除法的關系。
老師:如果用字母a 、b 分別表示被除數(shù)和除數(shù),那么除數(shù)與分數(shù)之間的關系怎樣表示呢?
老師依據(jù)學生的總結板書:a÷b = (b≠0)
明確:兩個整數(shù)相除,商可以用分數(shù)表示,反過來,分數(shù)能不能看作兩個整數(shù)相除?(可以,分數(shù)的分子相當于除法中的被除法,分母相當于除數(shù)。)
5.鞏固練習:
(1)口答:
、7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)
、1米的等于3米的( )
、郯2米的繩子平均分3段,每段占全長的 ( ),每段長( )米。
解釋0.5÷3= 是可以用分數(shù)形式表示出來的,但這種分數(shù)形式平時并不常見,隨著今后的學習,大家就能把它轉化成常見的分數(shù)。
(2)明辨是非
、僖欢烟O果分成10份,每份是這堆蘋果的 ( )
、1米的與3米的一樣長。( )
③一根木料平均鋸成3段,平均每鋸一次的時間是所用的總時間的。( )
④把45個作業(yè)本平均分給15個同學,每個同學分得45本的 。()(3)動腦筋想一想
、侔岩粋4平方米的`圓形花壇分成大小相同的5塊,每一塊是多少平方米?
(用分數(shù)表示)
、谛∶饔45分鐘走了3千米,平均每分鐘走了多少千米?每千米需要多少時間?
教學反思:
教材分析:本節(jié)課是在學生學習了分數(shù)的產生和意義的基礎上教學的,教學分數(shù)的產生時,平均分的過程往往不能得到整數(shù)的結果,要用分數(shù)來表示,已初步涉及到分數(shù)與除法的關系;教學分數(shù)的意義時,把一個物體或一個整體平均分成若干份,也蘊涵著分數(shù)與除法的關系,但是都沒有明確提出來,在學生理解了分數(shù)的意義之后,教學分數(shù)與除法的關系,使學生初步知道兩個整數(shù)相除,不論被除數(shù)小于、等于、大于除數(shù),都可以用分數(shù)來表示商。這樣可以加深和擴展學生對分數(shù)意義的理解,同時也為講假分數(shù)與分數(shù)的基本性質打下基礎。
設計意圖:
1.直觀演示是學生理解分數(shù)與除法的關系的前提:由于學生在學習分數(shù)的意義時已經對把一個物體平均分比較熟悉,所以本節(jié)課教學把一張餅平均分給3個人時并沒有讓學生操作,而是計算機演示分的過程,讓學生理解1張餅的就是張。3張餅平均分給4個人,每人分多少張餅,是本節(jié)課教學的重點,也是難點。教師提供學具讓學生充分操作,體驗兩種分法的含義,重點在如何理解3張餅的就是張。把2張餅平均分給3個人,每人應該分得多少張?繼續(xù)讓學生操作,豐富對2張餅的就是張餅的理解。學生操作經驗的積累有效地突破了本節(jié)課的難點。
2.培養(yǎng)學生提出問題的意識與能力是培養(yǎng)學生創(chuàng)新精神:本節(jié)課圍繞兩種分法精心設計了具有思考性的、合乎邏輯的問題串,“逼”學生進行有序的思考,從而進一步提出有價值的問題。
3.注重了知識的系統(tǒng)性:數(shù)學知識不是孤立的,而是密切聯(lián)系的,只有把知識放在一個完整的系統(tǒng)中,學生的研究才是有意義的。比如學生在應用分數(shù)與除法的關系練習時對0.5÷3=,部分學生會覺著的=表示方法是不行的,教師解釋:這種分數(shù)形式平時并不常見,隨著今后的學習,大家就能把它轉化成常見的分數(shù)形式。
【數(shù)學分數(shù)除法的教學反思】相關文章:
小學《分數(shù)與除法》數(shù)學教學反思02-27
小學數(shù)學《分數(shù)與除法》教學反思12-10
分數(shù)與除法教學反思02-06
分數(shù)除法的教學反思10-11
分數(shù)除法教學反思03-27
《分數(shù)除法》教學反思02-15
分數(shù)與除法的教學反思03-25
分數(shù)與除法教學反思07-16
分數(shù)除法教學反思06-08