高一數(shù)學(xué)教學(xué)計劃集合15篇
日子如同白駒過隙,不經(jīng)意間,迎接我們的將是新的生活,新的挑戰(zhàn),此時此刻需要制定一個詳細(xì)的計劃了。計劃怎么寫才能發(fā)揮它最大的作用呢?以下是小編為大家收集的高一數(shù)學(xué)教學(xué)計劃,歡迎閱讀與收藏。
高一數(shù)學(xué)教學(xué)計劃1
教學(xué)目標(biāo)
1通過對冪函數(shù)概念的學(xué)習(xí)以及對冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學(xué)生體驗(yàn)數(shù)學(xué)概念的形成過程,培養(yǎng)學(xué)生的抽象概括能力。
2使學(xué)生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運(yùn)用所學(xué)知識解決有關(guān)問題,培養(yǎng)學(xué)生的靈活思維能力。
3培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):冪函數(shù)的性質(zhì)及運(yùn)用
難點(diǎn):冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程
教學(xué)方法:問題探究法 教具:多媒體
教學(xué)過程
一、創(chuàng)設(shè)情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系?
(總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數(shù)。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這里a是S的函數(shù) 問題5:如果某人 s內(nèi)騎車行進(jìn)了 km,那么他騎車的速度 ,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點(diǎn)嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學(xué)生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。
冪函數(shù)的定義:一般地,我們把形如 的.函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念) 結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個冪函數(shù)?
、 y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學(xué)生獨(dú)立思考、回答)
2冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內(nèi)容?
(學(xué)生討論,教師引導(dǎo)。學(xué)生回答。)
3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?
(學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù) 不同,定義域并不完全相同,應(yīng)區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當(dāng)n=0時,其表達(dá)式y(tǒng)=x0=1;定義域?yàn)?-∞,0)U(0,+∞),特別強(qiáng)調(diào),當(dāng)x為任何非零實(shí)數(shù)時,函數(shù)的值均為1,圖象是從點(diǎn)(0,1)出發(fā),平行于x軸的兩條射線,但點(diǎn)(0,1)要除外。)
例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導(dǎo)學(xué)生具體問題具體分析,并作簡單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)
4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調(diào)性如何?如何判斷?
(學(xué)生思考,引導(dǎo)作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標(biāo)系中學(xué)生作圖,教師巡視。將學(xué)生作圖用實(shí)物投影儀演示,指出優(yōu)點(diǎn)和錯誤之處。教師利用幾何畫板演示。見后附圖1
讓學(xué)生觀察圖象,看單調(diào)性、以及還有哪些共同點(diǎn)?(學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密性。)
教師總評:冪函數(shù)的性質(zhì)
(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(diǎn)(1,1),
(2)如果a>0,則冪函數(shù)的圖象通過原點(diǎn),并在區(qū)間[0,+∞)上是增函數(shù),
(3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當(dāng)x從右邊趨向于原點(diǎn)時,圖象在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞,圖象在x軸上方無限地趨近x軸。
5通過觀察例1,在冪函數(shù)y=xa中,當(dāng)a是(1)正偶數(shù)、(2)正奇數(shù)時,這一類函數(shù)有哪種性質(zhì)?
學(xué)生思考,教師講評:(1)在冪函數(shù)y=xa中,當(dāng)a是正偶數(shù)時,函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當(dāng)a是正奇數(shù)時,函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。
例3鞏固練習(xí) 寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x ②y=x ③y=x 。
例4簡單應(yīng)用1:比較下列各組中兩個值的大小,并說明理由:
①0.75 ,0.76 ;
、(-0.95) ,(-0.96) ;
、0.23 ,0.24 ;
、0.31 ,0.31
例5簡單應(yīng)用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。
例6簡單應(yīng)用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
課堂小結(jié)
今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?
1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達(dá)式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。
布置作業(yè):
課本p.73 2、3、4、思考5
高一數(shù)學(xué)教學(xué)計劃2
本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用。教學(xué)重點(diǎn)是指數(shù)函數(shù)的圖像與性質(zhì)。
I這是指數(shù)函數(shù)在本章的位置。
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個新的初等函數(shù)。它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實(shí)踐。指數(shù)函數(shù)的學(xué)習(xí),一方面可以進(jìn)一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ)。因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗(yàn)數(shù)學(xué)思想與方法應(yīng)用的過程。
指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識還有著一定的現(xiàn)實(shí)意義。
、颍虒W(xué)目標(biāo)設(shè)置
1。學(xué)生能從具體實(shí)例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念。
2。學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小。
3。學(xué)生運(yùn)用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗(yàn)研究函數(shù)的一般方法。
4。在探究活動中,學(xué)生通過獨(dú)立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力。
、螅畬W(xué)生學(xué)情分析
授課班級學(xué)生為南京師大附中實(shí)驗(yàn)班學(xué)生。
1。學(xué)生已有認(rèn)知基礎(chǔ)
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認(rèn)識。學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴(kuò)充,具備了進(jìn)行指數(shù)運(yùn)算的能力。學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗(yàn)。學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨(dú)立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣。
2。達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)
學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認(rèn)識,需要具備較好的歸納、猜想和推理能力。
3。難點(diǎn)及突破策略
難點(diǎn):1。 對研究函數(shù)的一般方法的認(rèn)識。
2。 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面。
突破策略:
1。教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識研究的目標(biāo)與手段。
2。組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進(jìn)反思。
3。對猜想進(jìn)行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合。
、簦虒W(xué)策略設(shè)計
根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式。通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段。
學(xué)生的自主學(xué)習(xí),具體落實(shí)在三個環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時,學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念。
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學(xué)生自選底數(shù),開展自主研究,并通過匯報交流相互提升。
(3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用。
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開。從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進(jìn)而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明。
、酰虒W(xué)過程設(shè)計
1。創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系。你能用函數(shù)的觀點(diǎn)分析下面的例子嗎?
師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細(xì)胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個數(shù)為y,如何描述這兩個變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%。如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?
[師生活動]引導(dǎo)學(xué)生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0。84x。
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點(diǎn)?你能再舉幾個例子嗎?
〖問題1類似的.函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點(diǎn)?能否寫成一般形式?
[設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實(shí)際生活的聯(lián)系。引導(dǎo)學(xué)生從具體實(shí)例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示。初步得到y(tǒng)=ax這個形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu)。指數(shù)范圍擴(kuò)充到實(shí)數(shù)后,關(guān)注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0。a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義。為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1。此處不需對此解釋,只要補(bǔ)充說“1的任何次方總是1,所以通常還規(guī)定a≠1”。
[師生活動]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點(diǎn)是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax。
[教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0。5x…。如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn)。進(jìn)而提出這類函數(shù)一般形式y(tǒng)=ax。
Ⅵ.教后反思回顧
一、對于指數(shù)函數(shù)概念的認(rèn)識
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置。底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì)。不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點(diǎn)放在概念的合理性的理解以及體會模型思想。
二、對于培養(yǎng)學(xué)生思維習(xí)慣的考慮
在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣。實(shí)際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進(jìn)行觀察和歸納的良好的思維習(xí)慣。對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識水平或教學(xué)要求進(jìn)行證明或合理的說明。學(xué)生不僅學(xué)到了數(shù)學(xué)知識,也初步體驗(yàn)了研究問題的基本方法。
三、關(guān)于設(shè)計定位的反思
本節(jié)課的教學(xué)設(shè)計,力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略。如果學(xué)生基礎(chǔ)相對薄弱,問題的提出可以分層次進(jìn)行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程。
高一數(shù)學(xué)教學(xué)計劃3
一、指導(dǎo)思想:
使學(xué)生學(xué)好從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識和基本技能,培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力,以逐步形成運(yùn)用數(shù)學(xué)知識來分析和解決實(shí)際問題的能力。要培養(yǎng)學(xué)生對數(shù)學(xué)的興趣,激勵學(xué)生為實(shí)現(xiàn)四個現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀點(diǎn)。
二、基本情況分析:
1、4班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。
5班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。
2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。
5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。
3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結(jié)果是:
三、教材分析:
1、教材內(nèi)容:集合、一元二次不等式、簡易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。
2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一;函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一;數(shù)列有著廣泛的應(yīng)用,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。
3、教材重點(diǎn):幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和的公式。
4、教材難點(diǎn):關(guān)于集合的各個基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、
5、教材關(guān)鍵:理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。
6、采用了由淺入深、減緩坡度、分散難點(diǎn),逐步展開教材內(nèi)容的做法,符合從有限到無限的認(rèn)識規(guī)律,體現(xiàn)了從量變到質(zhì)變和對立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對獨(dú)立,方法比較單一,有助于掌握每一階段內(nèi)容。
7、各部分知識之間的聯(lián)系較強(qiáng),每一階段的知識都是以前一階段為基礎(chǔ),同時為下階段的學(xué)習(xí)作準(zhǔn)備。
8、全期教材重要的內(nèi)容是:集合運(yùn)算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項(xiàng)和前n項(xiàng)和。
四、教學(xué)要求:
1、理解集合、子集、交集、并集、補(bǔ)集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。
3、了解命題的概念、邏輯聯(lián)結(jié)詞的含義,掌握四種命題及其關(guān)系,掌握充分、必要、充要條件,初步掌握反證法。
4、了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系。
5、理解函數(shù)的單調(diào)性和奇偶性的概念,并能判斷一些簡單函數(shù)的單調(diào)性和奇偶性,能利用函數(shù)的奇偶性與圖象的對稱性的關(guān)系描繪圖象。
6、掌握指數(shù)函數(shù)、對數(shù)函數(shù)的概念及其圖象和性質(zhì),并會解簡單的函數(shù)應(yīng)用問題。
7、使學(xué)生理解數(shù)列的有關(guān)概念,掌握等差數(shù)列與等比數(shù)列的`概念、通項(xiàng)公式、前n項(xiàng)和的公式,并能夠運(yùn)用這些知識解決一些問題。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
高一數(shù)學(xué)教學(xué)計劃4
一、指導(dǎo)思想:
在學(xué)校教學(xué)工作意見指導(dǎo)下,認(rèn)真落實(shí)學(xué)校對備課組工作的各項(xiàng)要求,嚴(yán)格執(zhí)行學(xué)校的各項(xiàng)教育教學(xué)制度和要求,強(qiáng)化數(shù)學(xué)教學(xué)研究,提高全組老師的教學(xué)、教研水平,明確任務(wù),團(tuán)結(jié)協(xié)作,圓滿完成教學(xué)教研任務(wù)。
二、教材簡析
本學(xué)期仍然使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》教材,在堅持我校數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,在學(xué)生九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高學(xué)生所必要的數(shù)學(xué)素養(yǎng),以滿足學(xué)生的發(fā)展與社會進(jìn)步的需要,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。
三、教學(xué)任務(wù)
本學(xué)期授課內(nèi)容:必修一、必修二
四、學(xué)生基本情況及教學(xué)目標(biāo)
學(xué)生基本情況:本屆學(xué)生普遍基礎(chǔ)較差,學(xué)習(xí)自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。其次,學(xué)生的計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計算能力,同時要進(jìn)一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機(jī)補(bǔ)充一些內(nèi)容。因此時間上可能仍然吃緊。同時,因?yàn)閷W(xué)生底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個知識點(diǎn),掌握一個知識點(diǎn)。
教學(xué)目標(biāo):認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進(jìn)”,使每個學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。高一學(xué)生共有20個班,分兩個教學(xué)層次,每層個10個班。實(shí)驗(yàn)班的學(xué)生可根據(jù)實(shí)際情況提高教學(xué)目標(biāo)。平行班學(xué)生的主要任務(wù)有兩點(diǎn),第一點(diǎn):保證重點(diǎn)學(xué)生的數(shù)學(xué)成績穩(wěn)步上升,成為學(xué)生的優(yōu)勢科目;第二點(diǎn):加強(qiáng)數(shù)學(xué)學(xué)習(xí)比較困難學(xué)生的輔導(dǎo)培養(yǎng),增加其信息并逐步縮小數(shù)學(xué)成績差距。
五、教法分析:
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的課堂素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。 3、在教學(xué)中引導(dǎo)學(xué)生通過類比,推廣,特殊化,化歸等方法,盡可能培養(yǎng)學(xué)生邏輯思維的習(xí)慣。
六、教學(xué)措施:
1、認(rèn)真落實(shí),搞好集體備課。每周進(jìn)行一次集體備課。各位老師根據(jù)自已承擔(dān)的任務(wù),提前一周進(jìn)行單元式的備課,并出好本周的練習(xí)活頁。教研會時,由一名老師作主要發(fā)言人,對本周的教材內(nèi)容作分析,然后大家研究討論其中的重點(diǎn)、難點(diǎn)、教學(xué)方法等。
2、詳細(xì)計劃,保證練習(xí)質(zhì)量。教學(xué)中用配備資料《導(dǎo)學(xué)案》,要求學(xué)生按教學(xué)進(jìn)度完成相應(yīng)的習(xí)題,教師要提前向?qū)W生指出不做的題,以免影響學(xué)生的時間,每周以內(nèi)容“滾動式”編一份練習(xí)試卷,學(xué)生完成后老師要收齊批改,對存在的'普遍性問題要安排時間講評。
3、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。尖尖班的教學(xué)進(jìn)度可適當(dāng)調(diào)整,教學(xué)難度要有所提升;其他各班要培育好本班的優(yōu)生,注意激發(fā)學(xué)生的學(xué)習(xí)興趣,隨時注意學(xué)生學(xué)習(xí)方法的指導(dǎo)。備課組也將組織學(xué)生上培優(yōu)班。
4、加強(qiáng)輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進(jìn)行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學(xué)生。
附:教學(xué)進(jìn)度計劃
第一周集合
第二周函數(shù)及其表示
第三周函數(shù)的基本性質(zhì)
第四周指數(shù)函數(shù)
第五周對數(shù)函數(shù)
第六周冪函數(shù)
第七周函數(shù)與方程
第八周函數(shù)的應(yīng)用
第九周期中考試
第十至十一周空間幾何體
第十二周點(diǎn),直線,面之間的位置關(guān)系
第十三至十四周直線與平面平行與垂直的判定與性質(zhì)
第十五至十六周直線與方程
第十七至十八周周圓與方程
第十九至二十周期末考試
高一數(shù)學(xué)教學(xué)計劃5
一、制定的依據(jù)
隨著高一新教材的全面實(shí)施,本年級數(shù)學(xué)學(xué)科的教學(xué)進(jìn)入了新課程改革實(shí)際階段。本計劃制定的依據(jù)主要是以下三個:
。1)二期課改的理念:一個為本、三類課程、三維目標(biāo)
。2)新數(shù)學(xué)課程標(biāo)準(zhǔn)(詳見《廣州市中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)》)
。3)三本書:課本、教參、練習(xí)冊
。4)本校教研組對本學(xué)期學(xué)科的要求
二、基本情況分析
高一(3)全班共52人,男生24人,女生28人。上學(xué)期期末為區(qū)統(tǒng)測,平均分為54.1分,合格率為5%,優(yōu)秀率為0%,低分率為56%。高一(4)全班共53人,男生26人,女生27人。上學(xué)期期末為區(qū)統(tǒng)測,平均分為50.3分,合格率為3%,優(yōu)秀率為0%,低分率為62%。
從上學(xué)期期末統(tǒng)測來看,我班的學(xué)生在數(shù)學(xué)學(xué)習(xí)上可以說既有優(yōu)勢也有不足。
優(yōu)勢是:
1、有潛力;
2、師生關(guān)系比較融洽,互相信任,配合默契。
存在的不足是:
1、聰明有余,而努力不足;
2、男生聰明,上課積極,但不夠勤奮、踏實(shí);女生認(rèn)真,但上課效率不高,學(xué)得不夠靈活。
3、從期末統(tǒng)測來看,差生的比重大;
4、個別學(xué)生懶惰成性,學(xué)習(xí)態(tài)度、學(xué)習(xí)習(xí)慣極差;
5、平時學(xué)習(xí)不夠用心,自覺,專心思考、鉆研的時間太少;
6、一些同學(xué)學(xué)習(xí)成績起伏大,不穩(wěn)定;
7、一些好學(xué)生滿足現(xiàn)狀,驕傲自滿,思想放松,導(dǎo)致成績退步;
8、學(xué)習(xí)興趣,動力,上進(jìn)心不足。
三、本學(xué)期力爭達(dá)到的目標(biāo)
1、完成三類課程的教學(xué)任務(wù)。基礎(chǔ)性課程要扎扎實(shí)實(shí),夯實(shí)基礎(chǔ);拓展性課程要適當(dāng)延伸和補(bǔ)充,進(jìn)一步提高學(xué)生的能力和水平;研究性課程要重過程,不重結(jié)果,培養(yǎng)學(xué)生自主學(xué)習(xí),探索研究的習(xí)慣與品質(zhì)。
2、完成新數(shù)學(xué)課程標(biāo)準(zhǔn)規(guī)定的教學(xué)目標(biāo)。
3、進(jìn)一步規(guī)范學(xué)生的學(xué)習(xí)習(xí)慣(包括預(yù)習(xí)、上課、作業(yè)、復(fù)習(xí)等)。
4、轉(zhuǎn)化學(xué)困生,提高成績。有些學(xué)生成績總是上不去,以為不是塊讀數(shù)學(xué)的料,久而久之,產(chǎn)生放棄數(shù)學(xué),討厭數(shù)學(xué)的心理。由此,我在學(xué)習(xí)中,要多方面激發(fā)其學(xué)習(xí)興趣,耐心指導(dǎo),不斷激勵。讓其感受到成功的喜悅,增強(qiáng)自信心,讓其喜歡數(shù)學(xué),找到學(xué)習(xí)數(shù)學(xué)的樂趣。
5、一手提高優(yōu)秀率,一手減少不及格人數(shù),力爭班與班之間無明顯差距。
四、具體措施
1、從期末統(tǒng)測來看,學(xué)困生的比重大,優(yōu)秀率沒有。為此要進(jìn)行分層教學(xué),學(xué)困生要注重基本題、常規(guī)題的反復(fù)操練,增強(qiáng)他們對數(shù)學(xué)學(xué)習(xí)的信心和興趣。好學(xué)生要避免無謂失分的情況,注重數(shù)學(xué)思想、方法、能力的培養(yǎng),著眼于高三?偠灾瑢W(xué)困生還是繼續(xù)注重雙基的訓(xùn)練,將做過,講過的題目再反復(fù)操練。另外也不能忽略了高分學(xué)生的培養(yǎng),給好學(xué)生布置一些有質(zhì)量的課外題,定期查閱,批改,答疑。這樣,通過抓兩頭,促中間,帶動整體水平的提高。
2、提高教學(xué)質(zhì)量,要抓好課堂教學(xué)這一主陣地。根據(jù)課程標(biāo)準(zhǔn),教參,切實(shí)落實(shí)教學(xué)目標(biāo),做到全面不遺漏,要以考綱為標(biāo)準(zhǔn)。另外,每節(jié)課要安排必要的練習(xí)時間,多安排隨堂測試是有好處的。試題講解時要突出方法,突出思考、分析過程,要暴露學(xué)生解題過程中思維、概念、計算等方面的錯誤,對學(xué)生的錯誤要有針對性的矯正,補(bǔ)償。不就題講題,注意適當(dāng)?shù)淖兪。幫助學(xué)生掌握解題的方法,積累解題經(jīng)驗(yàn),課后要引導(dǎo)學(xué)生進(jìn)行反思、訂正,以加深對概念的理解,方法的掌握。
3、從期末統(tǒng)測看學(xué)生應(yīng)用能力明顯不足。教師要通過平時教學(xué)培養(yǎng)學(xué)生閱讀審題、數(shù)學(xué)建模的能力。讓學(xué)生熟悉一些常見的實(shí)際問題的背景,及解決這些問題的相關(guān)數(shù)學(xué)知識。
4、期末統(tǒng)測中選擇題普遍得分不高,應(yīng)引起我們的重視。由于選擇題只有唯一答案,所以解答選擇題的策略是:合理、迅速、檢驗(yàn),要善于轉(zhuǎn)化,避免機(jī)械套用公式、定理和“小題大做,舍近求遠(yuǎn),簡單問題復(fù)雜化”的不良習(xí)慣。另外,由填空題的錯誤表達(dá)和解答題的計算粗心、考慮不全面而造成的無謂失分,導(dǎo)致了分?jǐn)?shù)上不去和好學(xué)生考不出高分。所以,為保證得到該得的分?jǐn)?shù),要求必須認(rèn)真審題,明確要求,弄清概念,思考全面,正確表達(dá)。
5、注重講練結(jié)合。要多安排課堂練習(xí),當(dāng)堂檢測。當(dāng)日作業(yè),周練,月考要及時安排時間進(jìn)行講評。平時要注意練習(xí)的有效性(適當(dāng)題量,恰當(dāng)難度,精選精練),規(guī)范書寫,認(rèn)真批改,及時講評,反饋矯正(建立錯題集,進(jìn)行再認(rèn)識)。堅決反對只練不講,只講不練。評講中要針對學(xué)生的.錯因進(jìn)行分析,找出存在的問題,有針對性地加以彌補(bǔ)缺漏,發(fā)現(xiàn)問題要跟蹤到題,跟蹤到人。本次統(tǒng)測中許多試題平時講過,練過,考過,但錯誤仍然很多,值得我們重視與反思。
五、保障措施和可行性
1、關(guān)愛學(xué)生,嚴(yán)格要求,用情實(shí)現(xiàn)師與生的溝通,用景實(shí)現(xiàn)教與學(xué)的融合;
2、加強(qiáng)基礎(chǔ)知識、基本技能、基本方法的教學(xué)和基本能力的培養(yǎng),精心組織教學(xué)內(nèi)容,難度要適當(dāng),要追求最有效的訓(xùn)練,要清楚哪些學(xué)生需要哪些訓(xùn)練,切實(shí)注重部分學(xué)生的補(bǔ)差和提高,關(guān)注全體學(xué)生的學(xué),基本教學(xué)要求要有效落實(shí)到位;
3、注重加強(qiáng)知識之間的聯(lián)系和綜合,內(nèi)容和方式要更新,有層次推進(jìn),多角度理解,反思總結(jié),重視教與學(xué)的方式多樣化;
4、激發(fā)興趣,重視過程教學(xué),重視錯誤分析型學(xué)習(xí);
5、重視開放性、研究性問題的教學(xué),關(guān)注主觀評判性問題的學(xué)習(xí),研究新題型,真正發(fā)展學(xué)生的數(shù)學(xué)素質(zhì),培養(yǎng)其數(shù)學(xué)能力。
6、結(jié)合二期課改新課程標(biāo)準(zhǔn)、教參,扎實(shí)落實(shí)集體備課,通過集體討論,抓住教學(xué)內(nèi)容的實(shí)質(zhì),形成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題、月考題。
7、加大課堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。
8、加強(qiáng)課外輔導(dǎo),利用中午和晚間休息時間輔導(dǎo)學(xué)生答疑解惑、找學(xué)生談話等等。課外輔導(dǎo)是課堂的有力補(bǔ)充,是提高數(shù)學(xué)成績的有力手段。
9、搞好單元考試、階段性考試的分析。學(xué)生只有通過不斷的練習(xí)才能提高成績,單元考試、階段性考試是最好的練習(xí),每次都要做好分析,并指導(dǎo)學(xué)生糾錯。在分析過程中要遵循自主的思維習(xí)慣,使學(xué)生真正理解,過關(guān)。
10、學(xué)生除配套練習(xí)冊外,每人訂一本《一課一練》作為補(bǔ)充練習(xí),并要求每周寫學(xué)習(xí)感悟與學(xué)習(xí)疑惑,每人準(zhǔn)備一本錯題本收集錯題,每人在課本留白處做好課堂筆記。另外,我自己有充足的時間與資料,進(jìn)行習(xí)題精選與練習(xí)補(bǔ)充。
六、總目標(biāo)達(dá)成度與現(xiàn)階段教學(xué)目標(biāo)達(dá)成度的相關(guān)分析
本學(xué)期一定要在如何提高課堂效率上下功夫,同時抓平時的學(xué)習(xí)習(xí)慣,學(xué)習(xí)規(guī)范,作業(yè)質(zhì)量等細(xì)節(jié)問題,切實(shí)提高學(xué)習(xí)的有效性。另外,在上學(xué)期的基礎(chǔ)上,本學(xué)期力爭消滅不及格,并使那些因無謂失分而導(dǎo)致分?jǐn)?shù)起伏不定的學(xué)生能穩(wěn)定下來,從而進(jìn)一步提高優(yōu)秀率。
目前,我班面臨的困難與問題還非常多,好在學(xué)生的學(xué)習(xí)勢頭保持良好。我和我們班的全體學(xué)生,將盡我們所能,力爭在本學(xué)期能有所收獲,更進(jìn)一步。
七、課堂教學(xué)改革與創(chuàng)新、信息技術(shù)的應(yīng)用與整合
1、結(jié)合二期課改,將“接受式學(xué)習(xí)”變?yōu)椤爸鲃邮綄W(xué)習(xí)”,“啟發(fā)式學(xué)習(xí)”,將“要我學(xué)”變?yōu)椤拔乙獙W(xué)”,并積極開展拓展性課程,研究性課程,培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力。
2、加強(qiáng)基礎(chǔ)訓(xùn)練,但要避免“題海”戰(zhàn)術(shù),要精講精練,舉一反三,突出方法,總結(jié)經(jīng)驗(yàn),采取變式訓(xùn)練,專題訓(xùn)練等多種方式。
3、針對本學(xué)期三角公式多的特點(diǎn),設(shè)計一些學(xué)生學(xué)習(xí)支持材料,如公式默寫表,公式背誦口訣,公式記憶方法,公式小卡片等。
4、借助“TI圖形計算器”強(qiáng)大的圖形功能以及多媒體教學(xué)設(shè)備,制作精美課件,輔助教學(xué),使教學(xué)內(nèi)容更加形象直觀,通俗易懂。
5、利用“Bb”系統(tǒng)建設(shè)e課堂,建設(shè)網(wǎng)絡(luò)學(xué)習(xí)包。
6、寫數(shù)學(xué)感悟或一周問題,與學(xué)生進(jìn)行書面討論交流,答疑解惑,給予學(xué)法指導(dǎo)。
7、對不同層次的學(xué)生進(jìn)行分層輔導(dǎo),分層補(bǔ)充課外練習(xí)。
8、進(jìn)行數(shù)學(xué)演講,了解數(shù)學(xué)史,寫寫數(shù)學(xué)周記等,提升學(xué)生的數(shù)學(xué)素養(yǎng)與興趣。
高一數(shù)學(xué)教學(xué)計劃6
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的.興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點(diǎn):
1.“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2.“問題性”:以恰時恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4.“時代性”與“應(yīng)用性”:以具有時代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
三、教法分析:
1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3.在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
兩個班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計算能力,同時要進(jìn)一步提高其思維能力。
同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機(jī)補(bǔ)充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個知識點(diǎn),掌握一個知識點(diǎn)。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教學(xué)計劃7
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5第一章:解三角形;重點(diǎn)是正弦定理與余弦定理;難點(diǎn)是正弦定理與余弦定理的應(yīng)用;
第二章:數(shù)列;重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和;難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用;
第三章:不等式;重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點(diǎn)是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用;
必修2第一章:空間幾何體;重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積;難點(diǎn)是空間幾何體的三視圖;
第二章:點(diǎn)、直線、平面之間的位置關(guān)系;重點(diǎn)與難點(diǎn)都是直線與平面平行及垂直的判定及其性質(zhì);
第三章:直線與方程;重點(diǎn)是直線的傾斜角與斜率及直線方程;難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目;
第四章:圓與方程;重點(diǎn)是圓的方程及直線與圓的位置關(guān)系;難點(diǎn)是直線與圓的位置關(guān)系;
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、教學(xué)目的要求
1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實(shí)際問題。
2.通過日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識解決相應(yīng)的問題。
3.理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4.幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計算是認(rèn)識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認(rèn)識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認(rèn)識和理解空間中點(diǎn)、直線、平面之間的`位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時對學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
高一數(shù)學(xué)教學(xué)計劃8
一.指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《新課程標(biāo)準(zhǔn)》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機(jī)的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二.學(xué)情分析:
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面: 1、進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、
廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的.求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等.客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成敗)不了解,更不會去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。
4、不能計劃學(xué)習(xí)行動,不會安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會正確地自我評價。
5、不重視基礎(chǔ).一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運(yùn)用數(shù)學(xué)語言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績的提高
三、教學(xué)目標(biāo)與要求
必修1,主要涉及兩章內(nèi)容:
第一章:集合
通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補(bǔ)集的含義,會求在給定集合中某個集合的補(bǔ)集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識的過程中,培養(yǎng)學(xué)生的思維能力。
第二章:函數(shù)的概念與基本初等函數(shù)Ⅰ
教學(xué)本章時應(yīng)立足于現(xiàn)實(shí)生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學(xué)會用函數(shù)的思想、變化的觀點(diǎn)分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運(yùn)算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
第三章:函數(shù)的應(yīng)用
函數(shù)的應(yīng)用是學(xué)習(xí)函數(shù)的一個重要方面,學(xué)生學(xué)習(xí)函數(shù)的應(yīng)用,目的就
是利用已有的函數(shù)知識分析問題和解決問題.通過函數(shù)的應(yīng)用,對完善函數(shù)思想,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的意識,培養(yǎng)分析問題、解決問題的能力,增強(qiáng)進(jìn)行實(shí)踐的能力等,都有很大的幫助。
1.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
2.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
必修4:主要涉及三章內(nèi)容:
第一章:三角函數(shù)
通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價值,學(xué)會用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章:平面向量
在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。
第三章:三角恒等變換
通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一數(shù)學(xué)教學(xué)計劃9
一、具體目標(biāo):
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的本事。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)……
二、本學(xué)期要到達(dá)的教學(xué)目標(biāo)
1、雙基要求:
在基礎(chǔ)知識方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其資料反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照必須的'程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。
2、本事培養(yǎng):
能運(yùn)用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,構(gòu)成良好的思維品質(zhì);會根據(jù)法則、公式正確的進(jìn)行運(yùn)算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計運(yùn)算途徑;會提出、分析和解決簡單的帶有實(shí)際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,構(gòu)成數(shù)學(xué)的意思;從而經(jīng)過獨(dú)立思考,會從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。
3、思想教育:
培養(yǎng)高一學(xué)生,學(xué)習(xí)數(shù)學(xué)的興趣、信心和毅力及實(shí)事求是的科學(xué)態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學(xué)的美學(xué)價值,并懂的數(shù)學(xué)來源于實(shí)踐又反作用于實(shí)踐的觀點(diǎn);數(shù)學(xué)中普遍存在的對立統(tǒng)一、運(yùn)動變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn)。
三、進(jìn)度授課計劃及進(jìn)度表
。裕
高一數(shù)學(xué)教學(xué)計劃10
一、指導(dǎo)思想
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)。
二、學(xué)情分析及學(xué)生情況分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新高考我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的`銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
三、具體措施
。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)、所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。、
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
。4)讓學(xué)生通過單元考試,檢測自己的實(shí)際應(yīng)用能力,從而及時總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高一數(shù)學(xué)教學(xué)計劃11
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5第一章:解三角形。重點(diǎn)是正弦定理與余弦定理。難點(diǎn)是正弦定理與余弦定理的應(yīng)用。第二章:數(shù)列。重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和。難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用。第三章:不等式。重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式。難點(diǎn)是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用。
必修2第一章:空間幾何體。重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積。難點(diǎn)是空間幾何體的三視圖。第二章:點(diǎn)、直線、平面之間的位置關(guān)系。重點(diǎn)與難點(diǎn)都是直線與平面平行及垂直的判定及其性質(zhì)。第三章:直線與方程。重點(diǎn)是直線的傾斜角與斜率及直線方程。難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目。第四章:圓與方程。重點(diǎn)是圓的方程及直線與圓的位置關(guān)系。難點(diǎn)是直線與圓的位置關(guān)系。
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、教學(xué)目的要求
1、通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實(shí)際問題。
2、通過日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù)。理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識解決相應(yīng)的問題。
3、理解不等式(組)對于刻畫不等關(guān)系的意義和價值。掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題。能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4、幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的.學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計算是認(rèn)識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認(rèn)識空間圖形及其直觀圖的畫法。再以長方體為載體,直觀認(rèn)識和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一。上好每一節(jié)課,及時對學(xué)生的思想進(jìn)行觀察與指導(dǎo)。課后進(jìn)行有效的輔導(dǎo)。進(jìn)行有效的課堂反思。
高一數(shù)學(xué)教學(xué)計劃12
、
、瘢虒W(xué)內(nèi)容解析
本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學(xué)重點(diǎn)是指數(shù)函數(shù)的圖像與性質(zhì).
這是指數(shù)函數(shù)在本章的位置.
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實(shí)踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進(jìn)一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗(yàn)數(shù)學(xué)思想與方法應(yīng)用的過程.
指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識還有著一定的現(xiàn)實(shí)意義.
、颍虒W(xué)目標(biāo)設(shè)置
1.學(xué)生能從具體實(shí)例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念.
2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小.
3.學(xué)生運(yùn)用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗(yàn)研究函數(shù)的一般方法.
4.在探究活動中,學(xué)生通過獨(dú)立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.
、螅畬W(xué)生學(xué)情分析
授課班級學(xué)生為南京師大附中實(shí)驗(yàn)班學(xué)生.
1.學(xué)生已有認(rèn)知基礎(chǔ)
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認(rèn)識.學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴(kuò)充,具備了進(jìn)行指數(shù)運(yùn)算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗(yàn).學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨(dú)立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.
2.達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)
學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認(rèn)識,需要具備較好的歸納、猜想和推理能力.
3.難點(diǎn)及突破策略
難點(diǎn):1. 對研究函數(shù)的一般方法的認(rèn)識.
2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.
突破策略:
1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識研究的目標(biāo)與手段.
2.組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進(jìn)反思.
3.對猜想進(jìn)行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.
、簦虒W(xué)策略設(shè)計
根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.
學(xué)生的自主學(xué)習(xí),具體落實(shí)在三個環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時,學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念.
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學(xué)生自選底數(shù),開展自主研究,并通過匯報交流相互提升.
(3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開.從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進(jìn)而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明.
、酰虒W(xué)過程設(shè)計
1.創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系.你能用函數(shù)的觀點(diǎn)分析下面的例子嗎?
師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細(xì)胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個數(shù)為y,如何描述這兩個變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?
[師生活動]引導(dǎo)學(xué)生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點(diǎn)?你能再舉幾個例子嗎?
〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點(diǎn)?能否寫成一般形式?
[設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實(shí)際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實(shí)例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示.初步得到y(tǒng)=ax這個形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴(kuò)充到實(shí)數(shù)后,關(guān)注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對此解釋,只要補(bǔ)充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.
[師生活動]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點(diǎn)是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.
[教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn).進(jìn)而提出這類函數(shù)一般形式y(tǒng)=ax.
方案1:
生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))
師:板書學(xué)生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)
生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…
師:板書學(xué)生舉例(停頓),好像有不同意見.
生:底數(shù)不能取負(fù)數(shù).
師:為什么?
生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.
師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,我們希望這些函數(shù)的定義域就是R.
(若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴(kuò)充為R?你們所舉的例子中,定義域是否為R?)
師:這些函數(shù)有什么共同特點(diǎn)?
生:都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.
(若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點(diǎn)的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會基本初等函數(shù)的作用.)
師:具備上述特征的函數(shù)能否寫成一般形式?
生:可以寫成y=ax(a>0).
師:當(dāng)a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)
方案2:
生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))
師:板書學(xué)生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)
生:函數(shù)y=0.5x,y= x,…
師:這些函數(shù)的自變量是什么?它們有什么共同特點(diǎn)?
生:(可用文字語言或符號語言概括)都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.
師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?
生:底數(shù)不能取負(fù)數(shù).
師:為什么?
生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.
師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)
[階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.
[意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識的來龍去脈,那種直接拋出定義后輔以“三項(xiàng)注意”的'做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細(xì)枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個由粗到細(xì),由特殊到一般,由具體到抽象的漸進(jìn)過程,這樣更加符合人們的認(rèn)知心理.
2.實(shí)驗(yàn)探索匯報交流
(1)構(gòu)建研究方法
師:我們定義了一個新的函數(shù),接下來,我們研究什么呢?
生:研究函數(shù)的性質(zhì).
〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?
[設(shè)計意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對函數(shù)有了初步的認(rèn)識.在此認(rèn)知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個性,提供自主探究的平臺,通過匯報交流活動達(dá)成共識實(shí)現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.
[師生活動]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.
[教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識和經(jīng)驗(yàn),在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進(jìn)而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.
師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?
生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.
師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?
生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).
生:先研究幾個具體的指數(shù)函數(shù),再研究一般情況.
師:板書“畫圖觀察”,“取特殊值”
(若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會有不同.一次函數(shù)y=kx(k≠0)中,一次項(xiàng)系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個值,那我們怎么辦呢?)
(若有學(xué)生通過對y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))
[意圖分析]學(xué)習(xí)的過程就是一個不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機(jī)會,逐漸學(xué)會研究問題,促進(jìn)能力發(fā)展.
(2)自主探究匯報交流
師:我們確定了要研究的對象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.
〖問題3選取數(shù)據(jù),畫出圖象,觀察特點(diǎn),歸納性質(zhì).
[設(shè)計意圖]若直接規(guī)定底數(shù)取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對于圖象的認(rèn)識是被動的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認(rèn)知水平的差異,仍可能會造成部分學(xué)生被動接受.學(xué)生自主選擇底數(shù),雖有得到片面認(rèn)識的可能,但通過討論交流,學(xué)生能相互驗(yàn)證結(jié)論,仍能得到正確認(rèn)識.并且學(xué)生能在過程中體會數(shù)據(jù)如何選擇,了解研究方法.
由于描點(diǎn)作圖時列舉點(diǎn)的個數(shù)的限制,學(xué)生對x→∞時函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個數(shù)的限制,學(xué)生對于歸納的結(jié)論缺乏一般性的認(rèn)識.教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗(yàn)證猜想.
數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節(jié)課的重點(diǎn)是通過對指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動學(xué)生參與研究的每個過程,得到直接體驗(yàn).
[師生活動]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).
[教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實(shí)物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對結(jié)論進(jìn)行適當(dāng)?shù)恼f明,進(jìn)而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點(diǎn)作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動態(tài)圖象驗(yàn)證猜想,促進(jìn)學(xué)生體會數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強(qiáng)加于學(xué)生.對于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對于⑦,在例1第3小題中,會有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.
生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).
師:(巡視,必要時參與討論,及時提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵學(xué)生交流,請學(xué)生匯報.)有條理地整理一下結(jié)論,討論交流所得.(同時用實(shí)物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)
生:(可能出現(xiàn)的情況)(1)在兩個坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個底數(shù)大于1,一個底數(shù)小于1;(4)關(guān)于y軸對稱的兩個指數(shù)函數(shù).
師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個坐標(biāo)系中畫圖?為什么不也取兩個底數(shù)小于1?
師:(用彩筆描粗圖象,故意出錯)錯在哪里?為什么?
生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(diǎn)(0, 1).
師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(diǎn)(0, 1).
師:指數(shù)函數(shù)還有其它性質(zhì)嗎?
師:也就是說值域?yàn)?0, +∞).
生:指數(shù)函數(shù)是非奇非偶函數(shù).
師:有不同意見嗎?
生:當(dāng)0
(其它預(yù)設(shè):
(1)當(dāng)a>1時,若x>0,則y>1;若x<0,則y<1.
當(dāng)00,則y<1;若x<0 y="">1.
(2)學(xué)生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.
(3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對稱.)
師:(板書學(xué)生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學(xué)生試圖說明結(jié)論的合理性,可提供機(jī)會.)大家認(rèn)為底數(shù)a>1或0
[階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):
、俣x域?yàn)镽.
、谥涤?yàn)?0, +∞).
③圖象過定點(diǎn)(0, 1).
、芊瞧娣桥己瘮(shù).
⑤當(dāng)a>1時,函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;
當(dāng)0
、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對稱.
、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:
x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;
x=0時,兩圖象相交;
x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.
[意圖分析]通過探究活動,使學(xué)生獲得對指數(shù)函數(shù)圖象的直觀認(rèn)識.學(xué)生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報過程中,一方面要通過對探究較深入學(xué)生的具體研究過程的剖析,總結(jié)提升學(xué)習(xí)方法,優(yōu)化學(xué)習(xí)策略;另一方面要關(guān)注部分探究意識與能力都薄弱的學(xué)生的表現(xiàn),鼓勵他們大膽發(fā)言,激勵他們主動參與活動,讓全體學(xué)生成為真正的學(xué)習(xí)主體.自主探究活動能充分激發(fā)學(xué)生的相互學(xué)習(xí)能力,能有效幫助學(xué)生突破難點(diǎn).
3.新知運(yùn)用鞏固深化
(方案一)(分析函數(shù)性質(zhì)的用途)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運(yùn)用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(diǎn)(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?
生:可以求最值,可以比較兩個函數(shù)值的大小.
師:那你能舉出運(yùn)用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運(yùn)用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)
生:(舉例并判斷大小.)
師:你考察了哪個指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)
師:以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.(出示例1)
(方案二)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:(口述并板書)你能比較32與33的大小嗎?
生:直接計算比較.
師:那比較30.2與30.3的大小呢?能不能不計算呢?
生:利用函數(shù)y=3x的單調(diào)性.
師:能具體說明嗎?(引導(dǎo)學(xué)生規(guī)范表達(dá))我們再試一試.
(出示例1)
【例1】比較下列各組數(shù)中兩個值的大。
①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[設(shè)計意圖] 引導(dǎo)學(xué)生運(yùn)用指數(shù)函數(shù)性質(zhì).對于 32與33的大小比較,學(xué)生更可能計算出冪的值直接比較.變式后,學(xué)生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進(jìn)而運(yùn)用指數(shù)函數(shù)單調(diào)性,也可能直接運(yùn)用單調(diào)性.初步運(yùn)用新知解決問題,注重題意理解,擴(kuò)大知識遷移,感悟解題方法,達(dá)到對新知鞏固記憶,加深理解.
[師生活動]學(xué)生板演,教師組織學(xué)生點(diǎn)評.
[教學(xué)預(yù)設(shè)] ①②兩題,學(xué)生能運(yùn)用指數(shù)函數(shù)單調(diào)性解決.②題學(xué)生可能得到錯誤答案,教師可組織相互點(diǎn)評,規(guī)范表達(dá),正確運(yùn)用性質(zhì).③學(xué)生可能運(yùn)用不同方法,應(yīng)給予充分的時間,并在具體問題解決后引導(dǎo)學(xué)生總結(jié)一般方法.
師:(引導(dǎo)學(xué)生規(guī)范表達(dá))你考察了哪個指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?
師:(對③的引導(dǎo))你考慮利用哪個函數(shù)?是y=1.5x還是y=0.8x?這兩個函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學(xué)生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)
生:它們都過點(diǎn)(0, 1).
師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?
生:比較1.50.3,0.81.2和1的大小.
師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.
【例2】
、僖阎3x≥30.5,求實(shí)數(shù)x的取值范圍;
、谝阎0.2x<25,求實(shí)數(shù)x的取值范圍.
[設(shè)計意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時考查指數(shù)函數(shù)的定義域.
4.概括知識總結(jié)方法
〖問題4本節(jié)課我們學(xué)習(xí)了哪些知識?你還學(xué)會了哪些方法?
[設(shè)計意圖] 回顧所學(xué)內(nèi)容,深化認(rèn)知.開放式小結(jié),不同學(xué)生有不同的收獲.
[師生活動]學(xué)生發(fā)言總結(jié),交流所得.
[教學(xué)預(yù)設(shè)]
通過本節(jié)課對指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識和方法:
、僦笖(shù)函數(shù)的定義與性質(zhì);
②研究函數(shù)的一般方法和步驟.
師:本節(jié)課我們學(xué)習(xí)了什么知識?
生:指數(shù)函數(shù)的定義和性質(zhì).
師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?
生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).
生:然后從幾個具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.
師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會運(yùn)用這樣的方法研究新的函數(shù).
[意圖分析]課堂總結(jié)不是對所學(xué)知識的簡單回顧,應(yīng)讓學(xué)生在知識、方法和策略上多層次地整理,促進(jìn)學(xué)生理解所用學(xué)習(xí)方法的合理性與普遍性,使學(xué)生獲得知識與能力的共同進(jìn)步.
5.分層作業(yè),因材施教
(1)感受理解:課本第54頁,習(xí)題2.2(2):1,2,3,4;
(2)思考運(yùn)用:運(yùn)用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?
[設(shè)計意圖]分層布置作業(yè),“感受理解”面向全體學(xué)生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運(yùn)用”提供學(xué)生運(yùn)用函數(shù)研究的一般方法自主研究的機(jī)會.
、觯毯蠓此蓟仡
一、對于指數(shù)函數(shù)概念的認(rèn)識
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點(diǎn)放在概念的合理性的理解以及體會模型思想.
二、對于培養(yǎng)學(xué)生思維習(xí)慣的考慮
在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣.實(shí)際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進(jìn)行觀察和歸納的良好的思維習(xí)慣.對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識水平或教學(xué)要求進(jìn)行證明或合理的說明.學(xué)生不僅學(xué)到了數(shù)學(xué)知識,也初步體驗(yàn)了研究問題的基本方法.
三、關(guān)于設(shè)計定位的反思
本節(jié)課的教學(xué)設(shè)計,力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略.如果學(xué)生基礎(chǔ)相對薄弱,問題的提出可以分層次進(jìn)行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程.、
高一數(shù)學(xué)教學(xué)計劃13
一、教學(xué)內(nèi)容
本學(xué)期將完成“《數(shù)學(xué)①》必修”和“《數(shù)學(xué)④》必修” (人民教育出版社教A版)的學(xué)習(xí),教學(xué)輔助材料有《三維設(shè)計》和自愿訂閱學(xué)習(xí)方法報部分單元練習(xí)及學(xué)法指導(dǎo)閱讀材料。二、教學(xué)目標(biāo)與要求
(一)前半期完成《數(shù)學(xué)①》主要涉及三章內(nèi)容:
第一章集合與函數(shù)的概念(約13學(xué)時)
通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補(bǔ)集的含義,會求在給定集合中某個集合的補(bǔ)集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識的過程中,培養(yǎng)學(xué)生的思維能力。
第二章函數(shù)的概念與基本初等函數(shù)Ⅰ(約14學(xué)時)
教學(xué)本章時應(yīng)立足于現(xiàn)實(shí)生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學(xué)會用函數(shù)的思想、變化的觀點(diǎn)分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運(yùn)算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
3.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
第三章函數(shù)的應(yīng)用(約9學(xué)時)
結(jié)合實(shí)際問題,感受運(yùn)用函數(shù)概念建立模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的重要性,初步運(yùn)用函數(shù)思想理解和處理現(xiàn)實(shí)生活和社會中的簡單問題。學(xué)生還將學(xué)習(xí)利用函數(shù)的性質(zhì)求方程的近似解,體會函數(shù)與方程的有機(jī)聯(lián)系。
1、結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系。
2、根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
3、利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
4、收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的.實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。
(二)后半期完成《數(shù)學(xué)④》主要涉及三章內(nèi)容:
第一章三角函數(shù)(約16學(xué)時)
通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價值,學(xué)會用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章平面向量(約12學(xué)時)
在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。
第三章三角恒等變換(約8學(xué)時)
通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動的基礎(chǔ)上,體會向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式;
3.能正確運(yùn)用三角公式進(jìn)行簡單的三角函數(shù)式的化簡、求值和恒等式證明。
三、教學(xué)常規(guī)要求及建議(要點(diǎn))
根據(jù)學(xué)校對教師的常規(guī)要求,結(jié)合本備課組實(shí)際,擬提出以下幾點(diǎn)建議,望老師們自覺執(zhí)行,落實(shí)教學(xué)各個環(huán)節(jié),不拉同行的后腿,力求各班級之間平均分的差距達(dá)到學(xué)校要求。
1、做好傳、幫、帶工作,達(dá)到學(xué)校教務(wù)處要求。本組新分1青年教師,中二1人、中一教師2人,高級教師4人,在學(xué)校要求參加集體聽課、交流的教研活動之外,組內(nèi)教師之間不定時地聽隨堂課并交流不少于聽課總數(shù)的半。
2、集體參加組內(nèi)專題備課2—3次,每次中心發(fā)言人應(yīng)有發(fā)言材料準(zhǔn)備,其他教師補(bǔ)充發(fā)言記錄。
3、教師每周全收、批學(xué)生作業(yè)次數(shù)不低于上課總節(jié)數(shù)的五分之三(正常上課沒周收改作業(yè)至少3次。
3、每節(jié)課應(yīng)有教學(xué)目標(biāo)、重點(diǎn),突出解決的問題和方法、過程。
4、做好教學(xué)反思(每周至少有一次)
高一數(shù)學(xué)教學(xué)計劃14
高一年級學(xué)生往往對課程增多、課堂學(xué)習(xí)容量加大不適應(yīng),顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導(dǎo)。數(shù)學(xué)網(wǎng)高中頻道整理了高一數(shù)學(xué)下冊教學(xué)計劃,希望能幫助教師授課!
本學(xué)期高一數(shù)學(xué)備課組的工作緊緊圍繞學(xué)校、教科處及教研組的計劃安排來開展,以教學(xué)改革為動力、以學(xué)校創(chuàng)建為前提、以提高課堂效率為目的、以自主教育為模式、以現(xiàn)代信息技術(shù)為手段、以培養(yǎng)學(xué)生的創(chuàng)新能力為目標(biāo),全面改進(jìn)教育教學(xué)方法,更新教育觀念,改變傳統(tǒng)教學(xué)模式,培養(yǎng)學(xué)生綜合素質(zhì),搞好本學(xué)期工作。
一、指導(dǎo)思想
以教研組工作計劃為指導(dǎo),按照均衡、優(yōu)質(zhì)、高效原則,精誠團(tuán)結(jié),和諧創(chuàng)新,加強(qiáng)科組建設(shè),提高高一數(shù)學(xué)備課組的整體實(shí)力;努力完成本學(xué)期的教學(xué)目標(biāo),進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足學(xué)生發(fā)展與社會進(jìn)步的需要。這學(xué)期的工作重點(diǎn)是繼續(xù)進(jìn)行新課標(biāo)和新教材的研究,要著重抓好差生輔導(dǎo)和尖子生的培養(yǎng),讓絕大部分學(xué)生跟上教學(xué)進(jìn)度。
二、工作思路
1.在學(xué)?蒲刑幒徒虅(wù)處的領(lǐng)導(dǎo)下,有計劃地組織好全組教師的學(xué)習(xí)與培訓(xùn)工作,特別是搞好新課程標(biāo)準(zhǔn)和新教材的學(xué)習(xí)、研究和交流,落實(shí)學(xué)校的辦學(xué)理念。推廣現(xiàn)代教育科研成果,定期開展多種形式的教研活動。
2.以組風(fēng)建設(shè)為主線,以新課程標(biāo)準(zhǔn)為指導(dǎo),以教法探索為重點(diǎn),以構(gòu)建主動發(fā)展型課堂教學(xué)模式為主題,以提高隊伍素質(zhì),提高課堂效率,提高教學(xué)質(zhì)量為目的。深化課堂教學(xué)改革,努力改善教與學(xué)的方式。
3.教學(xué)研究要以集體備課為基礎(chǔ),以作課、聽課、評課活動以及出考卷活動為載體,以課題研究、論文、案例撰寫為提高,在研究狀態(tài)下理性的工作。培養(yǎng)本組教師養(yǎng)成教學(xué)反思的習(xí)慣,
三、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5:
第一章:解三角形;重點(diǎn)是正弦定理與余弦定理;難點(diǎn)是正弦定理與余弦定理的應(yīng)用;
第二章:數(shù)列;重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和;難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用;
第三章:不等式;重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與基本不等式;難點(diǎn)是二元一次不等式(組)及應(yīng)用;
必修2:
第一章:立體幾何初步。重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積,直線與平面平行及垂直的判定及其性質(zhì);難點(diǎn)是空間幾何體的三視圖,直線與平面平行及垂直的判定及其性質(zhì);
第二章:直線與方程;重點(diǎn)是直線的傾斜角與斜率及直線方程;難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目;圓與方程;重點(diǎn)是圓的方程及直線與圓的位置關(guān)系;難點(diǎn)是直線與圓的位置關(guān)系。
四、學(xué)情分析
經(jīng)過一學(xué)期的觀察發(fā)現(xiàn)學(xué)生的基礎(chǔ)知識水平、學(xué)習(xí)自覺性與基本學(xué)習(xí)方法比較欠缺,學(xué)生心理不穩(wěn)定,空間思維、抽象思維、邏輯思維較差,而本學(xué)期所要學(xué)習(xí)的內(nèi)容包含了高中數(shù)學(xué)中重要而難學(xué)的數(shù)列、不等式、立體幾何部分,因而教學(xué)時盡可能以課本為本,注重基礎(chǔ)和規(guī)范,不隨意拔高難度,努力使絕大部分學(xué)生打好三基。教學(xué)時在完成市教學(xué)進(jìn)度的前提下,盡可能的放慢速度,確保絕大部分學(xué)生的學(xué)習(xí)質(zhì)量。平時教學(xué)中老師要注意不斷鼓勵和欣賞學(xué)生的'優(yōu)點(diǎn)和進(jìn)步,使學(xué)生不斷體驗(yàn)到學(xué)習(xí)數(shù)學(xué)的樂趣。平時測試要注重考查三基,嚴(yán)格控制難度,使絕大部分學(xué)生及格,使學(xué)生體驗(yàn)到進(jìn)步和成功的喜悅。同時需進(jìn)一步加強(qiáng)學(xué)法指導(dǎo),多于學(xué)生進(jìn)行情感交流。
五、工作目標(biāo)
1、狠抓教學(xué)常規(guī)和學(xué)習(xí)常規(guī)的貫徹落實(shí)。在數(shù)學(xué)教學(xué)研究中努力做到三主(教學(xué)研究以學(xué)習(xí)理論為主導(dǎo)、大綱教材課程標(biāo)準(zhǔn)為主體、探索教學(xué)模式為主線)和三有(教學(xué)研究要對教學(xué)實(shí)踐有指導(dǎo)、對教學(xué)質(zhì)量有促進(jìn)、對教師有提高)。
2、加強(qiáng)現(xiàn)代教育教學(xué)理論的學(xué)習(xí),積極進(jìn)行課堂教學(xué)改革試驗(yàn)、逐步形成本學(xué)科特色,把我組建設(shè)成一個團(tuán)結(jié)協(xié)作、富有開拓創(chuàng)新精神的先進(jìn)集體。
3、把對新課程標(biāo)準(zhǔn)的學(xué)習(xí)與對新教材的研究結(jié)合起來,力求使每一位數(shù)學(xué)老師都能較好地領(lǐng)會新課程標(biāo)準(zhǔn)的基本理念和目標(biāo),較好地把握數(shù)學(xué)學(xué)習(xí)內(nèi)容中有關(guān)數(shù)感、符號感、空間觀念、統(tǒng)計觀念、應(yīng)用意識、推理能力等核心概念的內(nèi)涵和要求,初步掌握所教教材的結(jié)構(gòu)特點(diǎn)、每章每節(jié)教材的地位、作用和目標(biāo)要求。
4、認(rèn)真做好義務(wù)教育數(shù)學(xué)實(shí)驗(yàn)教材和高中新教材的階段總結(jié),加強(qiáng)教法的研究,注意總結(jié)和發(fā)現(xiàn)典型的教學(xué)案例,積極組織本組教師做好資料、信息收集工作,撰寫教育教學(xué)論文、案例,爭取在全國等各級論文評比中獲獎。
六、具體措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
7、積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例習(xí)題統(tǒng)一、資料統(tǒng)一、測試統(tǒng)一;上好每一節(jié)課,及時對學(xué)生的學(xué)習(xí)進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
高一數(shù)學(xué)教學(xué)計劃15
教材分析:
解不等式是不等式學(xué)習(xí)的主要內(nèi)容,是中學(xué)數(shù)學(xué)的一項(xiàng)重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎(chǔ),初中已經(jīng)學(xué)習(xí),二次不等式是重點(diǎn),也是學(xué)習(xí)的難點(diǎn)。作為數(shù)學(xué)重要的工具及方法,經(jīng)常運(yùn)用于其它數(shù)學(xué)知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數(shù)形結(jié)合”方法,這種方法將二次函數(shù),二次方程結(jié)合為一體,并且借助“圖形”直觀地得出答案,充分展現(xiàn)了數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,另外也展現(xiàn)了“數(shù)形結(jié)合”思想方法的巨大魅力。然而,個人認(rèn)為,還有一種更加自然的方法,將二次不等式轉(zhuǎn)化為一次不等式組的方法,這種方法思路自然,同時也體現(xiàn)了“轉(zhuǎn)化”思想,難度也不大,應(yīng)該更加符合學(xué)生的實(shí)際思維及思路。
學(xué)情分析:
初中已經(jīng)學(xué)習(xí)了一元一次不等式(或組)的解法,積累了一定的解題經(jīng)驗(yàn)。同時,對于二次方程,二次函數(shù)等相關(guān)知識學(xué)生均較為熟悉。然而,根據(jù)自己的調(diào)查,一少部分學(xué)生對于一元一次不等式及不等式組的解法都表現(xiàn)出一定程度的陌生。進(jìn)而,可以先從復(fù)習(xí)簡單的一次不等式及不等式組入手加以展開教學(xué)。
學(xué)生心理方面,學(xué)習(xí)積極性較高,對數(shù)學(xué)的學(xué)習(xí)興趣、信心也比較理想,有較強(qiáng)的學(xué)習(xí)動機(jī)——考上大學(xué),盡管是外在的誘因。
教學(xué)目標(biāo):
、僦R與技能
熟練掌握一元一次不等式及不等式組的解法,初步學(xué)會兩種方法求出一元二次不等式的解集
②過程與方法
經(jīng)歷不等式求解的探索及發(fā)現(xiàn)過程,體驗(yàn)“數(shù)形結(jié)合及轉(zhuǎn)化”思想的魅力,掌握方法,學(xué)會學(xué)習(xí)
、矍楦、態(tài)度及價值觀
在上述過程中,體驗(yàn)成功,激發(fā)了對數(shù)學(xué)學(xué)習(xí)的興趣及信心,發(fā)展了對數(shù)學(xué)學(xué)習(xí)的積極情感,增強(qiáng)了學(xué)習(xí)的內(nèi)在動機(jī)
教學(xué)重點(diǎn):
一元二次不等式的解法
教學(xué)難點(diǎn):
解法的探索及發(fā)現(xiàn),關(guān)鍵在于“識圖能力”
反思:
今天的課堂,這個難點(diǎn)突破欠缺力量,主要緣于自己備課時對難點(diǎn)考慮不到位,進(jìn)而缺乏必要的設(shè)計。在課堂上,就難點(diǎn)特別與個別差生進(jìn)行了交流,并且給予了幫助及指導(dǎo)。在指導(dǎo)過程中,我找出了他們困難的二個環(huán)節(jié):
首先,對平面曲線上點(diǎn)的橫坐標(biāo)與縱座標(biāo)之間的對應(yīng)關(guān)系表現(xiàn)陌生,進(jìn)而對它們的取值變化情況感到費(fèi)解。
其次,是差生的思維能力尚處于“經(jīng)驗(yàn)思維”,辯證思維能力薄弱,進(jìn)而對運(yùn)動中的點(diǎn)的坐標(biāo)取值范圍只能是“一籌莫展”。
在了解情況后,遵循“最近發(fā)展區(qū)”原理,以問題串的形式給差生提供必要的'幫助后,差生也順利度過了難關(guān)。由此足以說明,從知識的角度而言,“沒有教不好的學(xué)生,只有不會教的教師:這句話還是相當(dāng)有道理的。當(dāng)然,這一切的前提就是對學(xué)生“學(xué)情”的掌握。美國著名心理學(xué)家、結(jié)構(gòu)主義學(xué)派的代表人布魯納也有類似觀點(diǎn):給我一打健康的兒童,我可以教會他任何任何學(xué)科任何年齡段的任何知識。
教學(xué)程序:
一、復(fù)習(xí)一元一次不等式及不等式組的解法
以題組形式設(shè)計習(xí)題
①2x+3>7
、诓坏仁浇M
、踑x>b
二、創(chuàng)設(shè)二次不等式的生活背景實(shí)例,引入課題
采用課本上的實(shí)例,有關(guān)網(wǎng)絡(luò)收費(fèi)問題
三、一元二次不等式的解法探索
(1)
在教師的啟發(fā)引導(dǎo)下,從特殊到一般,學(xué)生經(jīng)歷“轉(zhuǎn)化”方法的探索及發(fā)現(xiàn)過程。
由于這種方法課本沒有給出,進(jìn)而課堂上不作為重點(diǎn),重在引導(dǎo)學(xué)生自行歸納、體驗(yàn)及總結(jié)“轉(zhuǎn)化”思想,最后以課外思考題的形式設(shè)計相應(yīng)習(xí)題。
(2)
采取啟發(fā)式教學(xué),師生共同經(jīng)歷“數(shù)形結(jié)合”方法的探索及發(fā)現(xiàn)過程,引導(dǎo)學(xué)生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學(xué)生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認(rèn)為,只有學(xué)生自己親身體驗(yàn)的知識才是有意義的知識,盡管這些知識不完整,語言或許不規(guī)范,思維或許不嚴(yán)密。
之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經(jīng)歷了前面的解題過程,這個環(huán)節(jié)全部放手讓學(xué)生完成,鼓勵他們通過或獨(dú)立或合作的方式解決學(xué)習(xí)任務(wù),完成課本上的表格。
反思:根據(jù)課堂反饋,二個班級大約有70%的同學(xué)能夠勝任這個任務(wù)。于是,在大多數(shù)學(xué)生完成的基礎(chǔ)上,我又進(jìn)行了一次講解,特別加強(qiáng)了對“識圖”環(huán)節(jié)的講解力度,力求突破難點(diǎn)。
四、練習(xí)環(huán)節(jié)
可以說,即使到了高三,仍然有不少同學(xué)對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點(diǎn),也是難點(diǎn)。從學(xué)習(xí)類型看,這節(jié)課顯然屬于技能課,對于技能的學(xué)習(xí)及掌握,關(guān)鍵是強(qiáng)化練習(xí),“力求熟能生巧”,達(dá)到自動化的水平。
課本上,配置了不少練習(xí)題。對于練習(xí),我采取多種方式,或叫學(xué)生上黑板板書,借助學(xué)生練習(xí)規(guī)范解題格式;或者口答,說解題思路及答案;或者下面獨(dú)立練習(xí)。
五、課堂小結(jié)
知識,思想、方法及感悟等
六、課后作業(yè)
①作業(yè)設(shè)計:分成A、B兩層,難度不一,讓學(xué)生自主選擇,均來源于課本上的A組或B組
、谡n外思考題:
1比較兩種解題方法即“轉(zhuǎn)化及數(shù)形結(jié)合”方法的優(yōu)劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍
變式一:戓將R改為空集,此時結(jié)論如何
變式二:仿上,自己改編條件,并解之。
反思:課外思考題的設(shè)計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優(yōu)生服務(wù),發(fā)展學(xué)生的思維能力,激發(fā)他們的學(xué)習(xí)興趣。同時,加強(qiáng)變式教學(xué),可以充分拓展習(xí)題的潛在價值,期望實(shí)現(xiàn)“舉一反三”的目標(biāo)。
【高一數(shù)學(xué)教學(xué)計劃】相關(guān)文章:
高一數(shù)學(xué)教學(xué)計劃【薦】12-28
中職高一數(shù)學(xué)教學(xué)計劃12-28
高一數(shù)學(xué)教學(xué)計劃(15篇)07-14
高一數(shù)學(xué)教學(xué)計劃精選15篇12-23
高一數(shù)學(xué)教學(xué)計劃(精選15篇)12-24
高一數(shù)學(xué)教學(xué)計劃15篇12-18