大學(xué)數(shù)學(xué)實(shí)驗(yàn)心得體會(huì)
當(dāng)我們對(duì)人生或者事物有了新的思考時(shí),心得體會(huì)是很好的記錄方式,它可以幫助我們了解自己的這段時(shí)間的學(xué)習(xí)、工作生活狀態(tài)。那么要如何寫呢?下面是小編為大家整理的大學(xué)數(shù)學(xué)實(shí)驗(yàn)心得體會(huì),歡迎閱讀與收藏。
大學(xué)數(shù)學(xué)實(shí)驗(yàn)心得體會(huì) 篇1
一直以來都覺得數(shù)學(xué)是門無用之學(xué)。給我的感覺就是好暈,好復(fù)雜!選修了大學(xué)數(shù)學(xué)這門課,網(wǎng)上也查閱了一些有趣的數(shù)學(xué)題目,突然間覺得我們的生活中數(shù)學(xué)無處不在。與我們的學(xué)習(xí),生活息息相關(guān)。
不得不說,數(shù)學(xué)是十分有趣的。可以說,這是死中帶活的智力游戲。數(shù)學(xué)有它一定的規(guī)律性,就象自然規(guī)律一樣,你永遠(yuǎn)也無法改變。但就是這樣,它就越困難,越有挑戰(zhàn)性。
數(shù)學(xué)無邊無際深?yuàn)W,更是能讓人著迷的遨游在學(xué)海的快樂中。數(shù)學(xué)是很深?yuàn)W,但它也不是我們可望不可及的。它更擁有自己的獨(dú)特意義。學(xué)習(xí)數(shù)學(xué)的意義為了更好的生活,初中數(shù)學(xué)吧;為了進(jìn)入工科領(lǐng)域工作,高中數(shù)學(xué)吧;為了謀求數(shù)學(xué)專業(yè)領(lǐng)域的發(fā)展,大學(xué)數(shù)學(xué)吧數(shù)學(xué)是什么是什么什么學(xué)科,公認(rèn)的!我覺得是一們藝術(shù),就象有黃金分割才美!幾何圖形如此精致!規(guī)律循環(huán)何等奇妙!
在網(wǎng)上看到一個(gè)很有趣的題目:有一個(gè)剛從大學(xué)畢業(yè)的年輕人去找工作。為了能夠勝任這第一份工作,他也自作聰明地象老板提出了一個(gè)特殊的要求!拔覄傔M(jìn)入社會(huì),現(xiàn)在只是想好鍛煉自己,所以你就不必付我太多錢。我先干7天。第一天,你付我5角錢;第二天就付我前一天的平方倍工錢,之后依次類推!崩习逡豢诖饝(yīng)了?傻搅俗詈笠惶祛I(lǐng)工資的時(shí)候,這個(gè)年輕人卻只領(lǐng)到了寥寥幾塊錢。年輕人很不解,老板卻說自己已經(jīng)很不錯(cuò)了,多付了他好幾百天的工錢。你知道為什么嗎?起初看到我是一頭霧水,后面就明白了:0.5元的平方是0.25元,0.25元的平方是0.625元......也就是說這么一直算下去,年輕人的工錢是一天比一天少的。自然,賺幾元錢就得好多天了。但是如果年輕人第一天要的工錢大于1元錢,那么7天的工錢可就多得多了。我們不得不說這個(gè)老板是聰明的,員工的馬虎的。這么簡(jiǎn)單的知識(shí)也會(huì)運(yùn)用錯(cuò)誤,導(dǎo)致自己吃了啞巴虧還沒辦法挽回。這么一個(gè)簡(jiǎn)單的例子事實(shí)上就已經(jīng)說明數(shù)學(xué)就在我們的身邊。
其實(shí)數(shù)學(xué)就是在我們的.身邊,之所以沒有發(fā)現(xiàn)它的存在,我想有時(shí)候可能還是因?yàn)樗拇嬖诩斑\(yùn)用實(shí)在太多。
數(shù)學(xué)講究的是邏輯和準(zhǔn)確的判斷。在一般人看來,數(shù)學(xué)又是一門枯燥無味的學(xué)科,因而很多人視其為求學(xué)路上的攔路虎,可以說這是由于我們的數(shù)學(xué)教科書講述的往往是一些僵化的、一成不變的數(shù)學(xué)內(nèi)容,如果在數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)史內(nèi)容而讓數(shù)學(xué)活起來,這樣便可以激發(fā)學(xué)生的學(xué)習(xí)興趣,也有助于學(xué)生對(duì)數(shù)學(xué)方法和原理的理解認(rèn)識(shí)的深化。數(shù)學(xué)不是迷宮,它更多時(shí)候是象人生曲折的路:坎坷越多,困難越多,那么之后的收獲就一定越大!
大學(xué)數(shù)學(xué)實(shí)驗(yàn)心得體會(huì) 篇2
數(shù)學(xué)建模是利用數(shù)學(xué)解決實(shí)際問題的方法,它幾乎是一切應(yīng)用科學(xué)的基礎(chǔ),數(shù)學(xué)實(shí)驗(yàn)是應(yīng)用計(jì)算機(jī)技術(shù)和先進(jìn)的數(shù)學(xué)軟件來學(xué)習(xí)和應(yīng)用數(shù)學(xué)。數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)著眼于培養(yǎng)學(xué)生數(shù)學(xué)知識(shí)應(yīng)用能力與創(chuàng)新意識(shí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,強(qiáng)調(diào)對(duì)數(shù)學(xué)的體驗(yàn)與探索。加強(qiáng)實(shí)踐教學(xué),是當(dāng)前大學(xué)數(shù)學(xué)教學(xué)改革的核心內(nèi)容,將數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)融入到大學(xué)數(shù)學(xué)的教學(xué)中,必將推動(dòng)大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容和課程體系的改革。
1地方本科院校大學(xué)數(shù)學(xué)的教學(xué)現(xiàn)狀
大學(xué)數(shù)學(xué),是高等學(xué)校理工專業(yè)、財(cái)會(huì)專業(yè)最重要的基礎(chǔ)課程之一,對(duì)于學(xué)生而言,大學(xué)數(shù)學(xué)內(nèi)容多、難度大,掛科率高,是學(xué)生最為頭疼的課程。當(dāng)前,地方本科院校大學(xué)數(shù)學(xué)的教學(xué)存在著四個(gè)主要問題:(1)當(dāng)前的教學(xué)是“重理論,輕實(shí)踐”。現(xiàn)行大學(xué)數(shù)學(xué)的教材和教學(xué)內(nèi)容非常穩(wěn)定,教學(xué)改革時(shí)變化不大,依然按照定義、性質(zhì)、定理、例題、習(xí)題的模式進(jìn)行,最后考試;(2)絕大多數(shù)專業(yè)不開設(shè)“數(shù)學(xué)建!焙汀皵(shù)學(xué)實(shí)驗(yàn)”課程,學(xué)生不清楚學(xué)習(xí)數(shù)學(xué)有什么用,而且教學(xué)內(nèi)容單一,與學(xué)生的專業(yè)的關(guān)聯(lián)性很小,所以學(xué)生對(duì)大學(xué)數(shù)學(xué)缺乏興趣;(3)大學(xué)數(shù)學(xué)課程課時(shí)少,內(nèi)容多,教師在教學(xué)中只是趕進(jìn)度教完所要求的內(nèi)容,以“學(xué)生為主”的教學(xué)理念難以貫徹;(4)大學(xué)數(shù)學(xué)課程的教學(xué)并沒有隨著計(jì)算機(jī)技術(shù)的和數(shù)學(xué)建模而發(fā)生根本性改變。
2數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)
數(shù)學(xué)建模就是用數(shù)學(xué)的語(yǔ)言來刻畫和描述一個(gè)實(shí)際問題,將它變成一個(gè)數(shù)學(xué)上得問題,然后經(jīng)過數(shù)學(xué)的處理,并以計(jì)算機(jī)為工具,應(yīng)用數(shù)學(xué)軟件,得到定量的結(jié)果。對(duì)實(shí)際問題建立模型時(shí),首先要識(shí)別問題,即了解問題的背景,分清問題的主要因素和次要因素,提出合理的假設(shè);其次,利用相應(yīng)的數(shù)學(xué)方法建立數(shù)學(xué)模型,并且借助數(shù)學(xué)軟件求解模型;最后,將所得解與實(shí)際問題作比較,分析模型的實(shí)際意義。凡是要用數(shù)學(xué)來解決的實(shí)際問題,都是應(yīng)用數(shù)學(xué)建模的思想和方法來解決的。隨著計(jì)算機(jī)技術(shù)的飛速發(fā)展,給數(shù)學(xué)建模以極大的推動(dòng),人們?cè)絹碓秸J(rèn)識(shí)到數(shù)學(xué)和數(shù)學(xué)建模的重要性。
數(shù)學(xué)實(shí)驗(yàn)指學(xué)生在教師指導(dǎo)下用計(jì)算機(jī)和軟件包學(xué)習(xí)數(shù)學(xué)和進(jìn)行數(shù)學(xué)建模求解。具體而言就是利用計(jì)算機(jī)和數(shù)學(xué)軟件為實(shí)驗(yàn)工具,以數(shù)學(xué)理論作為實(shí)驗(yàn)原理,以數(shù)學(xué)問題為等作為實(shí)驗(yàn)內(nèi)容,以學(xué)生為主體進(jìn)行仿真計(jì)算、歸納總結(jié)等探索活動(dòng)。數(shù)學(xué)實(shí)驗(yàn)有著極重要的教育價(jià)值,數(shù)學(xué)實(shí)驗(yàn)課與傳統(tǒng)的`課堂教學(xué)是不同的,它把“教師講授一學(xué)生聽練一測(cè)驗(yàn)考試”的過去的學(xué)習(xí)過程,變成“問題一猜想一實(shí)驗(yàn)一驗(yàn)證一創(chuàng)新”的學(xué)習(xí)過程,使數(shù)學(xué)教學(xué)從單純的教師講授、學(xué)生被動(dòng)接受的模式發(fā)展到學(xué)生主動(dòng)學(xué)習(xí)模式,這與當(dāng)前的課程教學(xué)改革理念完全一致。在數(shù)學(xué)實(shí)驗(yàn)中,由于現(xiàn)代信息技術(shù)的應(yīng)用,使學(xué)生擺脫了繁雜的、乏味的數(shù)學(xué)推算和數(shù)值計(jì)算,給學(xué)生創(chuàng)設(shè)了良好的實(shí)踐環(huán)境。數(shù)學(xué)實(shí)驗(yàn)對(duì)突破課堂教學(xué)中的難點(diǎn),培養(yǎng)學(xué)生的創(chuàng)造性思維、實(shí)踐能力和辯證唯物主義觀具有特殊作用。
3數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)融入大學(xué)數(shù)學(xué)課程的意義
3.1數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)?zāi)芘囵B(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的能力和創(chuàng)新能力
數(shù)學(xué)建模過程和數(shù)學(xué)實(shí)驗(yàn)是一個(gè)創(chuàng)造性的過程。學(xué)生在進(jìn)行數(shù)學(xué)建;顒(dòng)時(shí),首先要了解問題的實(shí)際背景,要求學(xué)生有較強(qiáng)的文獻(xiàn)搜索能力和自學(xué)能力;同時(shí),學(xué)生不僅要了解數(shù)學(xué)學(xué)科知識(shí)和各種數(shù)學(xué)方法,還要求學(xué)生熟悉一種或幾種數(shù)學(xué)軟件,熟練地設(shè)計(jì)算法,編制程序解決當(dāng)前實(shí)際問題,最后還要把完整的解決問題的過程和結(jié)果以科技論文的形式呈現(xiàn)出來。因此,數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)在培養(yǎng)學(xué)生的創(chuàng)新能力方面有著非常重要的作用。
3.2數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有利于提高學(xué)生對(duì)大學(xué)數(shù)學(xué)課程的理解程度和學(xué)習(xí)興趣
數(shù)學(xué)建模強(qiáng)調(diào)人們認(rèn)識(shí)和揭示客觀現(xiàn)象規(guī)律的過程。因此,在數(shù)學(xué)課堂教學(xué)中融入數(shù)學(xué)建模,可以讓學(xué)生體驗(yàn)發(fā)現(xiàn)問題、了解問題、構(gòu)造模型、解決問題的過程,從而啟迪學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)、興趣和能力。數(shù)學(xué)實(shí)驗(yàn)從問題出發(fā),側(cè)重于培養(yǎng)學(xué)生用形和量的觀念去觀察和把握現(xiàn)象的能力,有助于學(xué)生抓住問題的本質(zhì)和對(duì)抽象的數(shù)學(xué)概念的理解程度。
3.3數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)有利于培養(yǎng)學(xué)生的自學(xué)能力
數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)是面向?qū)嶋H問題的學(xué)習(xí)方法,很多知識(shí)需要學(xué)生通過學(xué)生自學(xué)來掌握,這恰好是對(duì)學(xué)生自學(xué)能力的培養(yǎng)。
3.4數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)有利于培養(yǎng)學(xué)生的科研能力
數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)活動(dòng)本身就是科學(xué)研究的過程,學(xué)生從傳統(tǒng)教學(xué)中的被動(dòng)學(xué)習(xí)變?yōu)橹鲃?dòng)探索。數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)使學(xué)生較早地接觸到科研實(shí)際,熟悉科研程序,極大地提高了學(xué)生的科研能力。
4將數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)融入到大學(xué)數(shù)學(xué)教學(xué)實(shí)踐
數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)可以培養(yǎng)學(xué)生創(chuàng)造力、洞察力和想象力,在激發(fā)學(xué)生學(xué)習(xí)興趣和學(xué)生學(xué)習(xí)的積極性方面都具有獨(dú)特的作用。就地方本科院校大學(xué)數(shù)學(xué)教學(xué)的現(xiàn)狀,如何讓數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)和數(shù)學(xué)教學(xué)有機(jī)結(jié)合起來,在目前是最為關(guān)鍵的。
4.1開設(shè)數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)選修課
開設(shè)數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)選修課,可以系統(tǒng)訓(xùn)練學(xué)生利用數(shù)學(xué)建模方法和數(shù)學(xué)實(shí)驗(yàn)方法解決生活中的實(shí)際問題。教師應(yīng)以案例和問題為導(dǎo)向,展示數(shù)學(xué)解決問題的過程和計(jì)算機(jī)的應(yīng)用。
4.2將數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)與大學(xué)數(shù)學(xué)的教學(xué)有機(jī)結(jié)合起來
多數(shù)非數(shù)學(xué)專業(yè),都要學(xué)習(xí)“高等數(shù)學(xué)”、“線性代數(shù)”、“概率論與數(shù)理統(tǒng)計(jì)”這幾門課程。這幾門課程都抽象難學(xué),所以教學(xué)中在數(shù)學(xué)概念形成的過程中滲透數(shù)學(xué)建模的思想,在數(shù)學(xué)知識(shí)的應(yīng)用中加以示范。在數(shù)學(xué)知識(shí)學(xué)習(xí)的過程中,用數(shù)學(xué)實(shí)驗(yàn)的方法讓學(xué)生切身體驗(yàn),將教材的結(jié)果通過數(shù)學(xué)實(shí)驗(yàn)來實(shí)現(xiàn),這可以更進(jìn)一步地激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的趣味。
4.3開展數(shù)學(xué)建模競(jìng)賽活動(dòng)
從1992年開始,國(guó)家每年舉辦一次全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,數(shù)學(xué)建模競(jìng)賽可以讓學(xué)生親身體驗(yàn)數(shù)學(xué),引發(fā)學(xué)生對(duì)實(shí)際問題研究的興趣,受到了大學(xué)生的普遍歡迎!瓟(shù)學(xué)建模競(jìng)賽是數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)結(jié)合的一項(xiàng)競(jìng)賽活動(dòng),將大學(xué)數(shù)學(xué)教學(xué)和數(shù)學(xué)建模競(jìng)賽結(jié)合起來,形成穩(wěn)定的實(shí)踐教育體系:對(duì)大一學(xué)生做數(shù)學(xué)建模講座,讓學(xué)生明白什么是數(shù)學(xué)建模;對(duì)大二和大三學(xué)生參加各種級(jí)別的數(shù)學(xué)建模競(jìng)賽,例如,全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,“深圳杯”數(shù)學(xué)建模挑戰(zhàn)賽,泰迪杯數(shù)據(jù)挖掘競(jìng)賽等;大四學(xué)生可以選擇數(shù)學(xué)建模方面的畢業(yè)論文選題或畢業(yè)設(shè)計(jì)。
5數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)融入大學(xué)數(shù)學(xué)教學(xué)中應(yīng)注意的問題
首先,數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課程屬于實(shí)踐性課程,在講授中貫徹少而精的原則,針對(duì)大學(xué)數(shù)學(xué)課程的主要概念和重要內(nèi)容,切忌追求面面俱到,從而增加學(xué)生的負(fù)擔(dān)。
其次,數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)融入到大學(xué)數(shù)學(xué)教學(xué)中,不是講幾個(gè)案例,做幾次實(shí)驗(yàn),把大學(xué)數(shù)學(xué)體系搞成一個(gè)大雜燴,”大學(xué)數(shù)學(xué)課程中融入數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn),根據(jù)章節(jié)內(nèi)容選取相適應(yīng)的案例,化整為零,適時(shí)融入,達(dá)到“隨風(fēng)潛入夜,潤(rùn)物細(xì)無聲”的教學(xué)效果。
最后,數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)融入大學(xué)數(shù)學(xué)中要循序漸進(jìn),從一堂課、一個(gè)案例、一個(gè)數(shù)學(xué)實(shí)驗(yàn)開始,適度拓展,切忌改變大學(xué)數(shù)學(xué)本身完善的教學(xué)體系。
總之,數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)是大學(xué)數(shù)學(xué)教學(xué)改革的突破口,在大學(xué)數(shù)學(xué)的教學(xué)中融入數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)的思想和方法,有利于實(shí)現(xiàn)從“學(xué)數(shù)學(xué)理論”到“運(yùn)用數(shù)學(xué)解決問題”的轉(zhuǎn)變,從而達(dá)到培養(yǎng)應(yīng)用型人才的目標(biāo)。同時(shí),這是一項(xiàng)長(zhǎng)期且艱巨的任務(wù),只有在教學(xué)實(shí)踐中不斷探索、總結(jié),不斷創(chuàng)新,才能提高大學(xué)數(shù)學(xué)教學(xué)質(zhì)量。
【大學(xué)數(shù)學(xué)實(shí)驗(yàn)心得體會(huì)】相關(guān)文章:
大學(xué)數(shù)學(xué)實(shí)驗(yàn)心得體會(huì)(通用15篇)10-21
數(shù)學(xué)實(shí)驗(yàn)心得體會(huì)09-19
數(shù)學(xué)實(shí)驗(yàn)心得體會(huì)04-23
大學(xué)實(shí)驗(yàn)心得體會(huì)04-07
大學(xué)實(shí)驗(yàn)心得體會(huì)03-15
數(shù)學(xué)實(shí)驗(yàn)心得體會(huì)8篇03-22
數(shù)學(xué)實(shí)驗(yàn)心得體會(huì)(8篇)03-22